
_connect.BRAIN
Operating instructions
as of program version 3.52

38.026.297.002 en

Translation of original operating instructions 38.026.297.002 en

Alle Rechte vorbehalten
All rights reserved
Tous droits réservés
Reservados todos los derechos
Tutti i diritti riservati
© 10/2012

Bizerba GmbH & Co. KG,
72336 Balingen

P.O. Box 10 01 64
72301 Balingen, Germany
Telephone (+49 7433) 12-0, Fax (+49 7433) 12-2696
Email: marketing@bizerba.com
Internet: http://www.bizerba.com

Operating instructions _connect.BRAIN Contents

38.026.297.002 en 1

Contents Page
1 About these instructions . 8

1.1 Safe-keeping . 8

1.2 Target group . 8

1.3 Symbols used . 8
1.3.1 How notes and information are depicted . 8
1.3.2 Explanation of warnings . 8
1.3.3 Viewing of menu call-up . 9

2 About the software . 10
2.1 Overview . 10

2.2 Rights . 10

2.3 Warranty . 11

2.4 Virus protection . 11

3 Licensing . 12
3.1 License packages . 12

3.2 Developer mode . 12

3.3 Software protection . 13

4 BizInfo - application information . 14
4.1 Overview . 14

4.2 Tab "Application" . 14

4.3 Tab "Modul" . 15

4.4 Tab "System" . 16

4.5 "Directories" tab . 16

4.6 "License" tab . 17

4.7 "3rd party" tab . 17

5 Device connection . 18
5.1 Modem . 18
5.1.1 Overview . 18
5.1.2 Configuration . 18
5.1.3 Connection establishment . 18
5.1.4 Connection clear-down . 19

Contents Operating instructions _connect.BRAIN

2 38.026.297.002 en

5.2 ADDI-DATA I/O board MSX-E1516 . 19

6 Use on terminal servers . 21
6.1 Citrix terminal server . 21
6.1.1 Installing _connect.Brain on a Citrix terminal server 21
6.1.2 Configuring user accounts for _connectServer . 21
6.1.3 Settings in the registry . 22
6.1.4 Using a serial port in a Citrix session . 22

6.2 Windows Terminal Server . 22
6.2.1 Installing _connect.Brain on a Windows terminal server 22
6.2.2 Temporary network breakdown when using a serial interface 22
6.2.3 Using VirtualES when _connectServer has been installed as service 23

7 _connectServer . 24
7.1 Overview . 24

7.2 Configuration . 24
7.2.1 Configuring _connectServer . 24
7.2.2 Operating modes . 24
7.2.3 Assigning user accounts . 25
7.2.4 Configuring operation in the network . 26

8 _connectConfig . 29
8.1 Overview . 29

8.2 Starting the program . 29

8.3 Program structure . 30

8.4 Menu bar and toolbar functions . 31

8.5 Functions in the work area . 34

8.6 _connectServer Configuration . 34
8.6.1 "Common" tab . 35
8.6.2 "Connections" tab . 37
8.6.3 "Devices" tab . 46

8.7 _connect2File / 2File Configuration . 49
8.7.1 Naming log files . 49
8.7.2 "Common" tab . 49
8.7.3 "Files" tab . 50
8.7.4 "Devices" tab . 52

8.8 BHI Configuration . 55
8.8.1 Adding and deleting master/slave devices and department 56

Operating instructions _connect.BRAIN Contents

38.026.297.002 en 3

8.9 Wizard for creating devices . 57
8.9.1 Creating new devices using a wizard . 57
8.9.2 Copying devices using the wizard . 58

8.10 Creating links to devices of other _connect.BRAIN clients 59

9 _connectDiagnostics . 60
9.1 Overview . 60

9.2 Starting the program . 60

9.3 Program structure . 61

9.4 Menu bar and toolbar functions . 61

10 _connect2File . 63
10.1 Overview . 63

10.2 Starting the program . 63

10.3 Program structure . 64

10.4 Menu bar and toolbar functions . 65

10.5 Functions in the connection windows . 66

10.6 File transfer . 66
10.6.1 Data transfer from host to _connect2File . 67
10.6.2 Data transfer from _connect2File to host . 68
10.6.3 Controlling data output by events . 68
10.6.4 File structure . 69

10.7 Troubleshooting . 71

11 2File . 73
11.1 Overview . 73

11.2 Starting the program . 73

11.3 Program structure . 74

11.4 Menu bar and toolbar functions . 75

11.5 Functions in the connection windows . 76

11.6 File transfer . 76
11.6.1 File transfer from host to 2File . 77
11.6.2 File transfer from 2File to host . 77
11.6.3 Controlling data output by events . 78

Contents Operating instructions _connect.BRAIN

4 38.026.297.002 en

11.7 File formats . 78
11.7.1 Text file . 79
11.7.2 XML file . 81

11.8 Troubleshooting . 83

12 _connect2DB . 85
12.1 Overview . 85

12.2 Starting the program . 85

12.3 Database setup . 85

12.4 Database structure . 87

12.5 Program structure . 88

12.6 Menu bar and toolbar functions . 88

12.7 Defining filters . 90
12.7.1 Creating filter using the wizard . 90
12.7.2 Creating filters manually . 91

12.8 Renaming filters . 92

12.9 Edit filter . 92

12.10 Device menu . 93
12.10.1 Change window devices . 94
12.10.2 Device settings . 95

12.11 Default data . 96

12.12 Defining handling of complex device commands 96

12.13 Deleting filters and relevant database tables . 98

12.14 Exporting data . 98

12.15 Data export via command line . 99

12.16 Configuring _connect2DB . 101

12.17 Deleting database contents . 103

12.18 Backing up and reloading data . 103

12.19 Convert DBConvert database . 104

13 _connect2SAP . 106
13.1 Overview . 106

13.2 Installation . 106

Operating instructions _connect.BRAIN Contents

38.026.297.002 en 5

13.3 Configuration . 107
13.3.1 _connect2SAP configuration . 107
13.3.2 SAP configuration . 108
13.3.3 Packing table configuration . 110

13.4 _connect2SAP Frontend . 112

13.5 _connect2SAP Registry and _connect2SAP Spooler 113

13.6 _connect2SAP Viewer . 114
13.6.1 Overview . 114
13.6.2 Starting the program . 114
13.6.3 Structure of the program . 114
13.6.4 Menu bar and toolbar functions . 115

13.7 Functional components . 116
13.7.1 Overview of functions . 116
13.7.2 Z_RFC_BCT . 116
13.7.3 Z_RFC_BCT_MULTI . 117
13.7.4 Z_RFC_BCT_PRINT . 117
13.7.5 Z_RFC_BCT_SPOOLER . 118
13.7.6 Z_BCT_LABEL_GLP . 118
13.7.7 Z_BCT_DIMENSION . 121
13.7.8 Z_BCT_REG . 122
13.7.9 Z_BCT_NULLSTELLEN . 126
13.7.10 CFB_RFC_BCT_MULTI . 127

14 _connectScannerWI . 128
14.1 Overview . 128

14.2 Prerequisites . 128

14.3 Installation . 128

14.4 Configuration . 129

14.5 Starting the program . 129

14.6 Program structure . 129

14.7 Functions in the context menu . 130

15 VirtualES - View . 131
15.1 Overview . 131

15.2 VirtualES - Admin . 131
15.2.1 Starting program . 131
15.2.2 Structure of the program . 132
15.2.3 Menu bar and toolbar functions . 133
15.2.4 Defining new configuration . 133

Contents Operating instructions _connect.BRAIN

6 38.026.297.002 en

15.3 VirtualES - View . 134
15.3.1 Start program . 134
15.3.2 Program structure . 134
15.3.3 Menu bar and toolbar functions . 135
15.3.4 Display data records . 136
15.3.5 Check signatures . 136
15.3.6 Registration of weighing results . 136

16 _edit.BRAIN . 137
16.1 Overview . 137

16.2 Starting the program . 137

16.3 Program structure . 137

16.4 Menu bar and toolbar functions . 138

16.5 Functions in the context menu . 141

17 LogPathConfig . 142
17.1 Overview . 142

17.2 Program structure . 142

17.3 Menu bar and toolbar functions . 142

17.4 Deleting log files . 142

18 Background information . 144
18.1 Device families . 144

18.2 BxNet language . 144
18.2.1 Telegram structure . 145
18.2.2 Coding of the data description . 145
18.2.3 BxNet data types . 145
18.2.4 Coding of the useful data . 146
18.2.5 Dimensionful data: . 146
18.2.6 Coding of prices . 146
18.2.7 Coding of weights . 147

19 Program interfaces . 149
19.1 _connectServer DCOM communication interface 149
19.1.1 Methods . 149
19.1.2 Events . 164

19.2 _connectServer DCOM information interface . 165
19.2.1 Methods . 165

Operating instructions _connect.BRAIN Contents

38.026.297.002 en 7

19.3 _connectControl DCOM communication interface 172
19.3.1 Properties . 173
19.3.2 Methods . 173
19.3.3 Events . 194
19.3.4 IsUnicodeDevice . 196

19.4 BctFunctions . 196
19.4.1 Conversion function . 197
19.4.2 Parse functions . 201

About these instructions Operating instructions _connect.BRAIN

8 38.026.297.002 en

1
1 About these instructions
Read the operating manual through carefully before installing and using the program, to
ensure that you fully utilize the quality and possibilities of application offered.

We offer training in relation to our products. Please contact your Bizerba consultant for de-
tails.

Our products undergo continuous further development and are subject to different country-
specific regulations. Examples of pictures and graphics included in these instructions may
vary from the version you have received.

1.1 Safe-keeping
The operating manual is an integral part of this software and must be kept easily accessi-
ble for all personnel. If selling or passing on the software to others, the complete operating
manual must also be provided.

1.2 Target group
Basic knowledge of the MS-Windows user interface is advantageous for operation of the
program.

1.3 Symbols used
The following symbols can be found in the manual:

Text with arrow prompts you to carry out an action.
1 Position number in figure.

<OK> Text inside a < > refers to a key or softkey.
"Display" Text inside a " " refers to display text.

Prerequirements are displayed with a gray background.

1.3.1 How notes and information are depicted
Notes and information are depicted as follows:

Observance of these notes is mandatory.

This information is provided for greater understanding.

1.3.2 Explanation of warnings
The signal word above the symbol indicates the risk level.

Operating instructions _connect.BRAIN About these instructions

38.026.297.002 en 9

1

DANGER Source of danger with high risk of imminent danger to persons!
The consequences are:
– life threatening injuries
– severe damage to health
– Measures to avoid the danger are specified.

WARNING Source of danger with medium risk with potentially threatening
danger for personnel!
The consequences can be:
– serious injuries
– damage to health
– serious damage to property
– Measures to avoid the danger are specified.

CAUTION Source of danger with slight risk with potentially threatening dan-
ger for personnel!
The consequences can be:
– Injuries
– Damage to property
– Measures to avoid the danger are specified.

CAUTION Source of danger, improper use!
Damage to property can result.
– Measures to avoid the danger are specified.

1.3.3 Viewing of menu call-up
In order to present the menu navigation clearly and concisely, this manual makes use of
the following abbreviations (example):

<Start> / "All programs" / "Bizerba" / "BspLicenseManager" / "BspLicenseManager"

About the software Operating instructions _connect.BRAIN

10 38.026.297.002 en

2 2 About the software
With _connect.BRAIN, Bizerba industrial scales, marking systems and printers can be con-
nected with a single communication software package. Regardless of the connected de-
vice types, these communicate via the Bizerba standardized BxNet language and so con-
trol all your processes. This communication tool permits all industrial scales, marking devi-
ces and printers to be connected very quickly and efficiently to a customer-specific EDP.

2.1 Overview
The software _connect.BRAIN includes the following programs:

_connectControl Bizerba Communication Control
_connect2File File-based device communication

_connectServer Bizerba Communication Server

_connectConfig Configuration tool

_connectDiagnostics Diagnostic tool

_edit.Brain Log view

_connect2DB Data transfer to a database

_connect2SAP Data transfer to the SAP system

_connectScannerWI Connection and operation of a barcode scanner

VirtualES Data transfer to a verifiable memory

Illustration 1: Communication diagram

2.2 Rights
All rights regarding this documentation and the software program are held by Bizerba. The
information in this document can be modified without providing any special notice.
BIZERBA is not under any obligations with regard to this document.

Operating instructions _connect.BRAIN About the software

38.026.297.002 en 11

2Proper purchase of the software licenses and instructions enables the programs to be
used in accordance with the number of licenses. Copies on DVD are only permitted for da-
ta backup purposes (working copy).

2.3 Warranty
Despite all efforts made, errors cannot be completely ruled out of descriptions. We wel-
come your hints or comments at all times.

We are not responsible for damages caused by:

– Non-observance of these operating instructions.
– Incorrect electrical installation by customer.
– Changes to the operating system and configuration and to our software and configu-

ration.

This warranty does not cover defects / damage caused by unauthorized persons.

Our products are constantly further developed and are subject to various country-specific
regulations. Examples of pictures and graphics contained in these operating instructions
may vary from the version which you received.

2.4 Virus protection
This software is manufactured and supplied without viruses based on the latest technolo-
gy. However, there is always a possibility that a computer may be contaminated by com-
puter viruses or other damaging software.

For your own safety, we recommend to run anti-virus software on your computer on a reg-
ular basis and after loading software. Furthermore, we recommend to check on viruses af-
ter loading software of other manufacturers or data carriers.

We recommend that you purchase an anti-virus program for virus analysis, which is con-
stantly updated to the latest status.

Licensing Operating instructions _connect.BRAIN

12 38.026.297.002 en

3

3 Licensing

3.1 License packages
For the operation of _connect.BRAIN, the following license packages are available:

Premium Professional BasicPlus Basic Licenses for

CX GX IX MX CX GX IX MX

X - - - X - - - - - 1 CX device

- X - - - X - - - - 1 GX device

- - X - - - X - X X 1 IX device

- - - X - - - X X X 1 MX device

X X - - 1 device in _con-
nect2DB

X X - - 1 device in _con-
nect2File

X X - - 1 device in _con-
nect2SAP

X - X - 1 device in VirtualES

Device assignment
License for CX device: CWM, CWE, CWD, CWP
License for GX device: GD, GH, GLP, GS, GV, GLM-I, GLM-E, GLM-B, GLM-P,

GLM-L, GLF, GLM-E Retail
License for IX device: BT, EL, WM, CWL Eco, ITC1, ITC2, ITC-S, ITE, IST, ITL, ITU,

MCE, MCI, ST, NTScale
Software: PSS
Other devices:
Siemens 3964R, scanner, terminal, ADDI-DATA IO card, ADDI-
DATA IO board

License for MX device: BVS - Bizerba Vision System

3.2 Developer mode
The following limitations apply to the developer mode:

– A maximum of 50 telegrams can be transmitted
– 1000 ms delay during telegram transmission
– When opening the connection, standby time of 5 s before interface opens
– Communication possible with one device only

Operating instructions _connect.BRAIN Licensing

38.026.297.002 en 13

3

3.3 Software protection
The _connect.BRAIN software is protected by means of cryptographic functions. Software
and device licenses are activated by a license key. They can be obtained from the sales or
support department. Each connected device and, if needed, specific functions require ap-
propriate licenses.

For the operation of _connect.Brain, the Bizerba Software Protection (BSP) has to be in-
stalled. _connect.BRAIN communicates with BSP and allows access to enabled devices
and functions.

The license manager BspLicenseManager allows access to the license management.

Call up license manager
<Start> / "All programs" / "Bizerba" / "BspLicenseManager" / "BspLicenseManager"

BizInfo - application information Operating instructions _connect.BRAIN

14 38.026.297.002 en

4

4 BizInfo - application information

4.1 Overview
Information about the program and its environment can be viewed via menu item "?" of a
program and submenu item "Info about…". The information is found on different pages,
which can be selected clicking the corresponding tabs.

Independent from the selected tab, the following buttons are always available.

Close the information window.

Save complete information in a zipped file.

Opens the Netviewer user dialog.

4.2 Tab "Application"
Tab "Application" contains program informa-
tion.

Illustration 2: Tab "Application"

Operating instructions _connect.BRAIN BizInfo - application information

38.026.297.002 en 15

4

4.3 Tab "Modul"
Tab "Modul" lists all programs required by
the application. Missing files are marked
with a red icon.

Illustration 3: Tab "Modul"

Information Description

C:\Programme\Bizerba\… Folder-/Directory path to file

{C50E6FA0-474E-4F66-9720-7C
7637047214}

ActiveX component license key

BCS.BCSCommunication.1 Name of ActiveX license key

23.06.2006 11:45 Time of creation of program or component

3444798 Bytes File size in bytes

ProdVer: … Product version

FileVer: … File version

BizInfo - application information Operating instructions _connect.BRAIN

16 38.026.297.002 en

4

4.4 Tab "System"
The "System" tab contains the following in-
formation:
– Information on operating system
– Information on network
– Information on processor (CPU)
– Information on system memory
– Information on the hard disks

Illustration 4: Tab "System"

4.5 "Directories" tab
The "Directories" tab contains the read-only
attributes of the single directories.

Illustration 5: "Directories" tab

Read-only directory.

File cannot be read or edited.

Operating instructions _connect.BRAIN BizInfo - application information

38.026.297.002 en 17

4

Read-only file.

File/directory cannot be read or edited.

4.6 "License" tab
The "License" tab contains information on
all modules available within this program
and on available and unused licenses. Fur-
thermore, the "BspLicenseManager" button
allows to open the BSP license manager.
To activate the button, select a main item.

Illustration 6: "License" tab

4.7 "3rd party" tab
The "3rd party" tab contains all third party
applications that are installed together with
the _connect.BRAIN setup.

Illustration 7: "3rd party" tab

Device connection Operating instructions _connect.BRAIN

18 38.026.297.002 en

5

5 Device connection

5.1 Modem

5.1.1 Overview
For modem connection, two different pre-configured modems are required. The PC-side
modem is called the transmitting modem, the device-side modem is the receiving modem.

5.1.2 Configuration
Create transmitting modems in the systems in modem pools and allocate them to the devi-
ces via modem connections. When opening a modem connection, _connectServer uses
the next free transmitting modem of the assigned modem pool.

Configure transmitting modems, modem pools and modem connections in _connectCon-
fig, see page 43.

5.1.3 Connection establishment
_connectServer configures the serial interface to which the modem is connected according
to the settings in _connectConfig. It opens the serial interface and initializes the modem.
The initialization process is determined by the parameters set in the modem and modem
connection configurations, see page 43.

Three attempts are initially made to actuate the modem. Procedure of each attempt:

1. Wait for "Serial-Com-Delay" time (modem).
2. Send AT\r\n sequence to the modem.
3. Wait for positive answer. Timeout for receiving an answer is the "Response-Timeout"

time (modem connection).

If the modem cannot be actuated after three attempts, the connection establishment proc-
ess is terminated.

If a modem connection can be established, the parameters are sent to the modem. Not set
parameters are ignored. Procedure:

1. Transmit "Pre-Dial-String" (modem connection).
Timeout is the "Response-Timeout" (modem connection).

2. Transmit "Pre-Dial-String2" (modem connection).
Timeout is the "Response-Timeout" (modem connection).
For Bizerba modem configurations, this string is normally not required. It has been
created because some modem commands (e.g. reset, template loading) can only
be separately sent to the modem and not together with other commands.

3. Transmit "Pre-Dial-String" (modem).
Timeout is the "Response-Timeout" (modem connection).

4. Transmit "Pre-Dial-String2" (modem).
Timeout is the "Response-Timeout" (modem connection).

5. Transmit "Dialstring" (modem connection).

Operating instructions _connect.BRAIN Device connection

38.026.297.002 en 19

5

6. Timeout is the "Dial-Timeout" (modem connection).
7. Transmit "Post-Dial-String" (modem connection).

Timeout is the "Response-Timeout" (modem connection).
The "Post-Dial-String" of the modem connection is not a modem command (no lead-
ing AT). It can be used to configure a serial switch after the modem, for example.

8. Transmit "Post-Dial-String" (modem).
Timeout is the "Response-Timeout" (modem connection).

5.1.4 Connection clear-down
Before closing the modem connection, the below mentioned commands are transmitted to
the modem. Not set parameters are ignored.

1. Wait for "Silent-Delay" (modem).
2. Transmit +++.
3. Wait for 200 ms.
4. Transmit HO.

Timeout is the "Response-Timeout" (modem connection).
5. Wait for "Hook-Off-Delay" (modem).
6. Transmit "Post-Hook-String" (modem connection).

Timeout is the "Response-Timeout" (modem connection).
7. Transmit "Post-Hook-String" (modem).

Timeout is the "Response-Timeout" (modem connection).

The serial interface is then closed.

5.2 ADDI-DATA I/O board MSX-E1516
_connect.BRAIN supports the ADDI-DATA I/O board MSX-E1516. _connectServer/Digital-
IO and the I/O board communicate via Ethernet.

According to ADDI-DATA, the I/O board must not be used as safety re-
source. This means, that inputs or outputs in safety relevant areas must
not be controlled by this I/O board.

About installation and configuration

When installing and configuring the I/O board, make sure that only one
computer communicates with the I/O board.

Access of more computers or _connect.BRAIN installations to the I/O board is not suppor-
ted. It may cause problems when controlling outputs or signaling inputs.

Device connection Operating instructions _connect.BRAIN

20 38.026.297.002 en

5

About operation

Make sure that the network load between _connectServer/DigitalIO and
the I/O board does not become excessive during operation.

If the network load is excessive, inputs and outputs may be controlled too slowly and the
I/O board watchdog (monitoring program) will report an error. In this case input and output
control is no longer reliable.

Operating instructions _connect.BRAIN Use on terminal servers

38.026.297.002 en 21

6

6 Use on terminal servers

6.1 Citrix terminal server

To ensure that _connect.Brain can work with the licensing, the client
must be located in the same domain as the server. Otherwise _con-
nect.Brain works in the developer mode only.

6.1.1 Installing _connect.Brain on a Citrix terminal server
To install _connect.Brain on a Citrix terminal server, proceed as follows:

"Start" / "Settings" / "System control" / "Software" / "Install"
Answer the question whether _connect.BRAIN shall be available on all clients with
Yes or No.

In the event of auto installation, _connect.BRAIN has to be registered
on the client again.

6.1.2 Configuring user accounts for _connectServer
Under DCOM configuration, the BCS configuration has to be set to "user starting applica-
tion".

Illustration 8: BCS properties

"Start" / "Settings" / "System control" /
"Administration" / "Component services"
"Component services" / "Computer" /
"Workstation" / "DCOM configuration"
Call up context menu for "BCS".
Select "Properties".
Call up "Identity" tab.
Activate "User starting the application".

Use on terminal servers Operating instructions _connect.BRAIN

22 38.026.297.002 en

6

6.1.3 Settings in the registry
If the BCS is always active on the terminal server, the following key can be entered in the
registry, so that the last Citrix application ends the BCS:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Citrix\wfshell\TWI
A new character string, called "LogoffCheckSysModules" is created, whose value is the
name of the task. In this case: "BCS.exe".

6.1.4 Using a serial port in a Citrix session
A batch file must be executed in the Citrix session, which maps the COMx port, for exam-
ple: "net use COM1: \\client\COM1"). Subsequently, "BCS" is able to access the client seri-
al port.

6.2 Windows Terminal Server
Installation under Windows Terminal Server is supported for Microsoft Windows 2000 and
2003 servers.

6.2.1 Installing _connect.Brain on a Windows terminal server
To install the program on a Windows terminal server, proceed as follows:

When installing or changing an installation, ensure that no user or system service is using
any part of the installation. Access can be monitored in the computer administration under
"System" / "Released folder" / "Open files".

If, once applications have been properly closed and services ended, there are still files be-
ing accessed, it is possible to cancel access here.

Installation via the Windows software administration
Open system administration via the Windows start menu.
Install program using "Neue Programme hinzufügen".

Installation via the command lines window
Open command lines window via the Windows start menu.
Execute change user / install.
Start installation program using setup.exe.
Execute change user / execute.
This procedure allows to install components that are not only for the present user but
for all users. This information is communicated to the system.

6.2.2 Temporary network breakdown when using a serial interface
When using a serial interface at the client computer during a Terminal session, please
note that if the network temporarily breaks down, connectServer can no longer access the
serial port.

This problem can only be resolved when the connection from the application program to
connectServer is closed and subsequently reestablished. Close the connection as follows:
Call up "Close" or stop devices via _connect2File.

Operating instructions _connect.BRAIN Use on terminal servers

38.026.297.002 en 23

6

The operating systems reports that the "device" is no longer available. In this case, "De-
vice" stands for COM port.

6.2.3 Using VirtualES when _connectServer has been installed as
service

If the VirtualES server, view, or admin displays an authorization error, the access rights set
on the VirtualES server (BizMemServer) have to be adjusted using the dcomcnfg Windows
program.

Open the "Component services" windows via the Windows system administration.
Open "Computer" / "Workstation" / "DCOM configuration".
Call up the "Properties" of BizMemServer via the context menu.
Open the "Security" tabs and, via <Edit...>, adapt the settings for the "Start and acti-
vation rights" and "Access rights".
User name: SYSTEM
Authorizations: Permit

_connectServer Operating instructions _connect.BRAIN

24 38.026.297.002 en

7

7 _connectServer

7.1 Overview
_connectServer (BCS.Exe) is the system control center for communication between pro-
grams and devices. _connectServer is installed as DCOM object which can be accessed
by means of the DCOM interface.

DCOM (Distributed Component Object Model) is a Microsoft proprietary technology for
communication among software components distributed across networked computers. It is
an extension of COM (Component Object Model) which permits standardized access to
software components no matter which programming language is used.

To access the _connectServer, you can integrate the ActiveX control element _connect-
Control (BCC.OCX) in own proprietary programs. The properties, methods and events that
can address _connectServer are described in a separate chapter, see page 149.

7.2 Configuration

7.2.1 Configuring _connectServer
Configure _connectServer via the _connectConfig, see page 34.

The settings are stored in the following ini files:
BCSconn.ini: Settings in the "Connections" tab.
BCSdevice.ini: Settings in the "Devices" tab.
BCSserver.ini: Settings in the "Common" tab.

7.2.2 Operating modes
_connectServer can be operated as application or service. By default, the program is in-
stalled as application. It is possible to change the operating mode via the command line
window.

Operating instructions _connect.BRAIN _connectServer

38.026.297.002 en 25

7

You need administration rights to change the operating mode via the
command line window.

Application: _connectServer is activated as soon as another program estab-
lishes connection via the DCOM or COM interface. _connect-
Server is deactivated as soon as the program that established
the last connection closes the connection. Since _connectServ-
er is only active when used by other programs, this operating
mode facilitates changing the configuration and updating.

Service: _connectServer becomes active when starting the operating
system and remains active until the operating system is shut
down. Since there will not be any delays due to repeated open-
ing and closing of the program, this operating mode offers a
better performance. The automatic monitoring of services en-
sures that the program will be automatically re-started after a
program crash. The operation as service makes changing the
configuration and updating more difficult because the service
has to be manually closed and re-started.

Changing the operating mode via the command line window
Call up the command line window via the start menu.
In the _connect.BRAIN installation directory, go to the BCT\BCS Components subdir-
ectory.
Change the operating mode. The following commands are available:

BCS.exe -unregserver Delete the set operating mode. A new op-
erating mode can be set then.

BCS.exe -regserver Operate program as application.

BCS.exe -service Operate program as service.

7.2.3 Assigning user accounts
Use the dcomcnfg Windows program to allocate the user account with which _connect-
Server will be started. The possible settings depend on the set operating mode of the pro-
gram.

Open the "Component services" windows via the Windows system administration.
Open "Computer" / "Workstation" / "DCOM configuration".
Call up the "Properties" of BCS via the context menu.

_connectServer Operating instructions _connect.BRAIN

26 38.026.297.002 en

7

Open the "Identity" tab and set the user account under which the program will be star-
ted.
Possible settings with operation as application:
"The interactive user.": Use the account of the user that is currently logged on the

operating system.
"User starting the appli-
cation.":

Use the account of the user who starts the application. This
can be a different user than the one currently logged on the
system if e.g. the application is started with RunAs in another
user context.

"This user.": Use a preset user, no matter which application requires ac-
cess.

Possible settings with operation as service:
"This user.": Use preset user, however individually defined.
"System account (only
for services).":

Use user account of operating system. Default setting for
service.

7.2.4 Configuring operation in the network
The following configuration modifications are required to allow remote access to the _con-
nectServer via a network.

Make the settings centrally using the domain controller or individually on
every computer connected in the network.

– Create a new user group (hereinafter referred to as Bizerba) and a new user (herein-
after referred to as _connect.BRAIN). Allocate the new user to the user groups User,
Main user and Bizerba.
When creating a user, please observe the following:
– The user is not authorized to change the password.
– The password must not expire.
– The password must be active.

Operating instructions _connect.BRAIN _connectServer

38.026.297.002 en 27

7

As an example, the following description uses the Bizerba user group
and the _connect.BRAIN user. If other names are assigned, the follow-
ing descriptions apply accordingly to the user group and the user saved
with the selected name.

– Allocate existing and new users that shall have access to _connectServer to the
Bizerba user group.

– Adapt the DCOM configuration to the workstation and _connectServer as described
below.

Adapt DCOM configuration to workstation:
Open the "Component services" windows via the Windows system administration.
Open "Computer".
Open the "Properties" via the context menu of the workstation and make the following
settings:

Settings in the "Standard properties" tab

"Activate DCOM (Distributed COM) on
this computer"

Activate.

"Standard authentication level" Set "Connect".

"Standard identity change level" Set "Identify".

Settings in the "COM security" tab

"Access rights" Via <Edit limits>, add the Bizerba user
group with all activated rights.

"Start and activation rights" Via <Edit limits>, add the Bizerba user
group with all activated rights.

Adapt DCOM configuration to _connectServer (BCS):
In the "Component services" window, open "Computer" / "Workstation" / "DCOM con-
figuration".

_connectServer Operating instructions _connect.BRAIN

28 38.026.297.002 en

7

Via the BCS context menu, call up "Properties" and make the following settings:

Settings in the "General" tab

"Authentication level" Set "Standard".

Settings in the "Security" tab

"Start and activation rights" Select "Adapt" and, via <Edit>, add the
Bizerba user group with all activated
rights.

"Access rights" Select "Adapt" and, via <Edit>, add the
Bizerba user group with all activated
rights.

"Configuration rights" Select "Adapt" and, via <Edit>, add the
Bizerba user group with all activated
rights.

Settings in the "Identity" tab

Select "This user." and enter the user _connect.BRAIN with the corresponding pass-
word.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 29

8

8 _connectConfig

8.1 Overview
_connectConfig is used to configure the following applications:
– _connectServer - Bizerba communication server (BCS)
– _connect2File - File based communication interface
– BHI - Bizerba host interface

8.2 Starting the program
Call up _connectConfig via the start menu.
Answer the question "Load Data from _connectServer ?" with <yes> to download the
current configuration from the _connectServer (BCS).

or
Answer the question with <no> to create a new configuration.
If necessary, confirm the message that the new configuration has been successfully
imported.

The start window of the program appears.

_connectConfig Operating instructions _connect.BRAIN

30 38.026.297.002 en

8

8.3 Program structure

Illustration 9: User interface _connectConfig
1 Navigation area

2 Tabs in the navigation area

3 Buttons for configuration selection

4 Menu bar

5 Tool bar

6 Work area

7 Overview area

The user interface contains the following areas, in addition to typical Windows elements:

Navigation area: Select content for editing. The navigation area varies according
to the selected configuration and is split up in tabs.

Work area: Configure devices and connections.
Overview area: Display settings of similar devices or connections in a tabular

structure. Whilst editing a serial interface for example, the over-
view area shows a table with the settings of all created serial in-
terfaces.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 31

8

Select one of the three possible configurations via the toolbar buttons:

<BCS>
Configuration _connectServer - Bizerba communication server

<2File>
Configuration _connect2File - File based communication interface

<BHI>
Configuration BHI - Bizerba host interface

8.4 Menu bar and toolbar functions

Functions for creating new item as well as rename, delete, copy, and
paste functions are available via the corresponding context menu.

Functions in the "File" menu

"New" Create new configuration.

"Open" Open existing configuration.

"Save" Save open configuration under current name.

"Save as..." Save open configuration under a freely selected name.

"_connect.BRAIN
Import/Export" / "da-
ta from _connect-
Server"

Establish server connection and load current server con-
figuration in the _connectConfig work area.

"_connect.BRAIN
Import/Export" / "da-
ta to _connectServ-
er"

Establish server connection and send the configuration
that is currently being edited in _connectConfig to the
server.

"Last file"
or for example
"1: C:\Bizerba\...
\Beispiel.BCS"

Open one of the last saved configurations.
To this end, the menu contains up to four items with pro-
gressive number, part of the path and the file name. If
there is not any configuration available, it contains only the
grayed out "Last file" menu item.

"Exit" Close _connectConfig.

_connectConfig Operating instructions _connect.BRAIN

32 38.026.297.002 en

8

Functions in the "Edit" menu

"New Ins" Add new device or new connection. The function is availa-
ble when a structural level is marked in the navigation area,
e.g. "Serial".

"Rename F2" Rename device or connection.

"Delete Del" Rename device or connection. The function is available
when a device or connection is marked in the navigation
area. Before deletion, a query appears.

"Copy CTRL+C" Copy device or connection to clipboard. The function is
available when a device or connection is marked in the nav-
igation area.

"Paste CTRL+V" Paste device or connection from clipboard into work area.
The function is available as soon as a device or connection
has been copied to the clipboard.

Functions in the "View" menu

"Toolbar" Show or hide toolbar.

"Status bar" Show or hide status bar.

"Overview" Show or hide overview below the work area.

"Tabpages" /
"_connect2File-
Files"

Show or hide "Files" tab in the _connect2File configuration,
see page 50.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 33

8

Functions in the "Extras" menu

"Language" Set user language.
The language information is saved as text files in the ..\Pro-
gramme\Bizerba\BCT\BCS Configuration\language directory.
The "Language" drop down list contains the names of these
text files as options.

"Wizard" Call up assistant for creating devices, see page 57.

"Import devices" Create links to devices of other _connect.BRAIN clients, see
page 59.

"Conversion ta-
bles" / "Import from
file"

Import conversion tables from a file, see page 42.

"Conversion ta-
bles" / "Export into
file"

Export conversion tables to a file, see page 42.

Functions in the "?" menu

"Info about _con-
nectConfig"

Show program information, see page 14.

_connectConfig Operating instructions _connect.BRAIN

34 38.026.297.002 en

8

Functions that are only available via the toolbar

Back to the previous tab.

Go to the next tab.

Configure _connectServer (BCS), see page 34.

Configure _connectServer (BCS), see page 49.

Configure BHI, see page 55.

Test connection, see page 37.

Display of modifications to the configuration.
Symbol is grey: Configuration not modified since last saving.
Symbol is blue: Configuration modified since last saving.

8.5 Functions in the work area
The following buttons are available in the work area at different program positions.

<Configure object>
Example: Configure the interface that is assigned to a modem.

<...> Open "File-Selection" window.

<Back> After configuring the assigned object, return to the original work
area.
Example: After configuring an interface, return to the modem con-
figuration the interface is assigned to.

<Default> Restore default settings in all fields of the current work area.

<Advanced> Show extended settings of an object.

8.6 _connectServer Configuration
Use the <BCS> buttons to configure the _connectServer program.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 35

8

8.6.1 "Common" tab

Application
Make individual settings for _connectServer here.

Settings

"PC-Address:" PC address of PC that communicates with devices, functioning as
_connectServer.
Value range: 1-127

"Error log level:" /
"Size"

Kind of errors to be logged (left) and maximum size of log file
(right).
Value range for dropdown list (left):
"User": All error messages are displayed.
"Normal": Error message of the "Normal" level are

displayed.
"Debug": Error message of the "Debug" level are

displayed.
"Warning": Error message of the "Warning" level are

displayed.
Value range for input field (right):
1-10,000,000 bytes

"Delete Protocolfile" Number of days after that commlog files will be deleted. With acti-
vated registration, commlog files save the data transfer between
_connectServer and the device.
Value range: 1-90 days

"_connect.BRAIN-
language:"

Language in that _connectServer logs and outputs error messages.
The dropdown list may contain customer-specific languages in ad-
dition to standard languages.

_connectConfig Operating instructions _connect.BRAIN

36 38.026.297.002 en

8

_connect2SAP
Make the settings for the SAP system interface here. The SAP system is accessed via
three levels that can be individually configured:

– Frontend (BCT2SAP Frontend)
– Registry (BCT2SAP Registry)
– Spooler (BCT2SAP Spooler)

Settings

"Device for func-
tion-module
Z_RFC_BCT"

Settable for "Frontend" and "Registry".
Selection of a device created on _connectServer for assignment in
the SAP system. If "No device" is set, the device is unknown in the
SAP system.

"SAP Destination" Settable for "Registry" and "Spooler".
Name of functional component in the SAP system (program ID in
the RFC destination (SM59)).

"SAP Host" Settable for "Registry" and "Spooler".
IP address of the SAP host.

"SAP Gateway" Settable for "Registry" and "Spooler".
Gateway of the SAPsystem.

"SAP Reconnect
Time"

Settable for "Server" and "Spooler".
Time interval in seconds between two attempts to establish a con-
nection to the SAP system.

"delete SAP Trace" Settable for "Server" and "Spooler".
Delete or do not delete SAP trace.
Specify in the SAP system whether trace files have to be created or
not.

_connectScannerWI
With _connectScannerWI, a scanner can be used in the keyboard wedge so that data is
transferred to the active program via keystrokes (e.g.Notepad), see page 128.

Make the settings for these scanning operations here.

Settings

"Scanner" Select scanner.

"End of Line" Select control character for marking the line end.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 37

8

Settings

"EraseChar" Select the control character that is to be deleted from the data flow.

"Replace text %2u" Each text contained in the left column is substituted by the control
character selected in the same line of the right column.

Testing connections
This function is used to check connection to single devices or all connected devices. Prior
to checking, the current configuration has to be send to the _connectServer.

Start the connection test via the menu or using the following icons of the toolbar:

Test connection.

In the navigation area of the "Common" tab, call "Connection test".
or

Click the corresponding icon of the toolbar.
Answer the "Save changed document to _connectServer-Server ?" question with
<Yes>.
Enter password.
<Connect>
Confirm the message stating that export was successful.
In the editing area, select the device whose connection is to be tested.

or
Activate the "All devices" control field.
<Test>

The connection test result is shown in the "Common" table next to the relevant device.

8.6.2 "Connections" tab
The "Connections" tab is used to define and configure connections, dialogs, conversion ta-
bles, modem connections, and local IP addresses for device connection.

Configuring serial connections

Settings

"Assignation" Assignment to a device family. The device-specific default settings
and restrictions of this device family are taken in consideration.

"Port" Assignment of a physically existing serial interface.
The name of the serial connection that was created in _con-
nectConfig can be freely selected and does not need to match
the name of the physical interface.

_connectConfig Operating instructions _connect.BRAIN

38 38.026.297.002 en

8

Settings

"Baudrate" Speed of the interface.

"Databits" Number of data bits.
Value range:
4; 5; 6; 7; 8

"Parity" Parity.
Value range:
– no parity
– odd
– odd
– Mark, i.e. always 1
– Space, i.e. always 0

"Stopbits" Number of stop bits.
Value range:
1; 1,5; 2

"Protocol" Selection of a protocol for controlled data transfer.
Value range:
– "no handshake" (no protocol)
– "Xon/Xoff" (software protocol)
– "RTS/CTS" (hardware protocol)
– "Xon/Xoff + RTS/CTS" (mixed protocol)

Configuring profibus connections

Settings

"Assignation" Assignment to a device family so that device-specific default set-
tings and restrictions are taken in consideration.
Use the GX device family also for CX devices, see page 144.

"Card" Assignment of a Profibus card.

"Channel" Assignment to a Profibus channel.
Value range:
1: Price labeler
1, 2: Industrial devices

"Baudrate" Speed of the interface.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 39

8

Configuring TCP/IP connection

Settings

"Assignation" Assignment to a device family so that device-specific default set-
tings and restrictions are taken in consideration.

"Type" Transmission type.
TCP_SERVER_CLIENT=client/server

"Device-IP" IP address of the device used.

"Hostname" Specification of the host name instead of the IP address. If the host
name is known to the DNS (Domain Name Server), the correspond-
ing IP address can be displayed in the "Device-IP" field by means
of the <IP> button.

"Port" Local TCP/IP port for communication with the device. Use port
number 1024 or higher because the area 0..1023 is reserved for
standard programs.

"Local IP address" IP address that is locally to be used for communication with the de-
vice. If the entered IP address is selected whilst establishing a
TCO/IP connection, communication with the device is performed
via this IP address. If nothing is defined, the first found IP address
is used.
Indication of the local IP address is necessary for error-free
communication between the device and the PC when the PC
has several IP addresses.
When using the "Local IP address" setting, make sure that a
local IP address has been configured for all devices with
Ethernet configuration. Otherwise Ethernet communication
problems may occur.
The configuration can be checked in the overview area, see
page 30.

"use DHCP" activated: Use DHCP (Dynamic Host Configuration
Protocol) for automatic determination of
the device IP address.
This setting can also be used without
DHCP. In this case the device name
must be stored in the network, e.g. in
DNS (Domain Name System). Otherwise
the device IP address cannot be deter-
mined.

not activated: No automatic determination of the IP ad-
dress.

"Check of valid con-
nection to device
(ping)"

Function for service technician, cannot be set via the _connectCon-
fig program.

_connectConfig Operating instructions _connect.BRAIN

40 38.026.297.002 en

8

Interface dialogs

Standard interface dialogs can be viewed but not configured with the
exception of modem-specific settings in case of retail scales.

Configuration of newly created interface dialogs and of copies of the
standard interface dialog can be customized.

Settings for GX and IX device families

"Assignation" Assigned device family.

"Connection-type" Connection type.
Value range:
– "Serial"
– "Profibus"
– "TCP/IP"

"Dialog-type" Type of communication with the device.
Value range:
"no dialog": Data transfer and receipt without frame

protocol.
"S-dialog": Data transfer with positive (ACK) or neg-

ative (NAK) confirmation of receipt.
"N-dialog": Enquiry (ENQ) prior to transmission

whether data can be sent (ACK) or not
(NAK). In case of permission, data trans-
fer with confirmation of receipt (ACK or
NAK).

"Blockcheck" Block check type.
Value range:
"no check": No block test.
"with LRC": Longitudinal redundancy check (LRC).

"Enquirychar" ASCII code for sending enquiry in N dialog.

"Pos/Neg acknowl-
edge"

ASCII codes for positive (ACK) or negative (NAK) confirmation of
receipt.

"Start characters
1/2"

ASCII codes for marking a block start.

"End characters
1/2"

ASCII codes for marking a block end.

"Delimiter" ASCII code for a delimiter.

"IgnoreChar" With IX devices only.
ASCII code for identification of characters to be ignored.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 41

8

Settings for GX and IX device families

"Retry" Number of repetitions in the event of connection errors.

"Timeout in ms:" Maximum waiting time when establishing connection.
Value range: 1000…10.000 ms

LW device family settings

"Assignation" Display of the assigned device family.

"Dialog-type" Dialog type.
Value range:
"SCHDLC": HDLC conform dialog.
"SCTCP": TCP/IP conform dialog.

"Init-command" Command character for initialization.

"Init-name" Identifier.

"Retry" Number of repetitions in the event of connection errors.

"Modem-Type" With serial connection only (dialog type "SCHDLC").
Modem type.
Value range: 0…99

"Phone-No." With serial connection only (dialog type "SCHDLC").
Telephone number for modem connection.

"Password" With serial connection only (dialog type "SCHDLC").
Password for protection of setting.

"Blockcheck" With serial connection only (dialog type "SCHDLC").
Block check type. Value range:
"no check": No block test.
"LRC": Longitudinal redundancy check (LRC).
"16-Bit CRC": Cyclic redundancy check (CRC).

Creating and editing conversion tables
Character replacements for conversion operations are defined in character conversion ta-
bles. Characters that are not listed in the conversion table are transferred unchanged.
Conversion tables for the most important standard conversions are part of the program.

_connectConfig Operating instructions _connect.BRAIN

42 38.026.297.002 en

8

Each character conversion table consists of two parts:
<_connectServer >> De-
vice>:

Conversion from PC to device

<Device >> _connect-
Server>:

Conversion from device to PC

Creating a new character conversion table
In the navigation area, press "conversion tables".
In the <Edit> menu, call up the <New> menu item.

or
In the context menu, call up the "New Conversion table".
A new conversion table is displayed in the navigation and work area.

Creating character conversion table
Select the device familiy for which the conversion table shall be valid in the
<Assignation> dropdown list.
Enter the required character replacements for both conversion directions.

Entering character replacements
Add a line to the table using <Add>.
Select the character to be replaced in the dropdown list on the left below the edited
table part.
Select the replacement character in the dropdown list on the right below the edited ta-
ble part.

Deleting lines from a conversion table
Select the line and press <Delete>.

Exporting and importing conversion tables
Conversion tables can be exported and imported. The conversion tables are saved
as .CNV files in the system and imported from there. These files can contain several con-
version tables.

This feature makes it possible to maintain different conversion settings
under the same table name for international applications.

Exporting conversion tables
"Extras" / "Conversion tables" / "Export into file"
Select the conversion table to be exported and click <OK>.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 43

8

Select a path in the "File-Selection" window and enter a file name.

Several exported conversion tables are saved in the same file.
When reimporting this file, you'll obtain single conversion tables
again.

Importing conversion tables
"Extras" / "Conversion tables" / "Import from file"
Select the file to be imported in the "File-Selection" window.
Import using <Open>.

The conversion table appears in the _connectServer configuration on the "Connections"
tab. It can be edited and assigned to devices.

Update the display to be able to see the imported conversion table. To
do so, change the tab and return to previous one.

Creating and editing modems, modem pools and modem connections
Assign a modem connection to each device connected by means of a modem. The mo-
dem connection itself refers to a modem pool. When establishing connection to a device,
_connectServer uses the next free modem of the assigned modem pool.

Each modem pool consists of at least one modem. Each modem is assigned to a modem
pool.

To be able to establish a modem connection, you have to create at least one modem pool
with at least one modem first.

Modem settings

"Serial-Com-Delay" Delay time in ms for transmission.

"Hook-Off-Delay" Delay time in ms until acceptance of a connection.

"Silent-Delay" Delay time in ms when closing the modem connection to set the
modem to the command mode.

"Pre-Dial-String" Prefix for dialing

"Pre-Dial-String2" Further prefix for dialing if the first prefix is a separate command
which must be followed by another command.

"Dial-Timeout" Postfix for dialing.

_connectConfig Operating instructions _connect.BRAIN

44 38.026.297.002 en

8

Modem settings

"Post-Hook-String" Command after accepting a connection.

"Interface" Serial interface.

Modem connection settings

"Log messages" Allow or refuse event logging.

"Dialstring" Command for selecting a phone number.

"Dial-Timeout" Maximum waiting time until successful establishment of connection
in ms.

"Response-Time-
out"

Maximum waiting time until successful initialization of connection
with remote station in ms.

"Pre-Dial-String" Prefix for dialing

"Pre-Dial-String2" Further prefix for dialing if the first prefix is a separate command
which must be followed by another command.

"Post-Dial-String" Postfix for dialing.

"Post-Hook-String" Command after accepting a connection.

"Modem-Pool" Modem pool used.

Creating modem in new modem pool
In the navigation area, press "Modem-Pools".
In the "Edit" menu, call up the "New" menu item.

or
In the context menu, call up the "New Modempool".
A new modem pool with a new modem is created.

Creating modem in existing modem pool
Select the modem pool in the navigation area.
In the "Edit" menu, call up the "New" menu item.

or
In the context menu, call up the "New Modem".
A new modem is created.

Creating a modem connection
In the navigation area, press "Modem-connections".
In the "Edit" menu, call up the "New" menu item.

or

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 45

8

In the context menu, call up the "New Modem-connection".
A new modem connection is created.

The newly created items in the navigation area can be renamed, de-
leted and copied using the corresponding menu functions, see page 31.

Creating and editing local IP addresses

Settings

"Local IP address" IP address that is locally to be used for communication with the de-
vice. If the entered IP address is selected whilst establishing a
TCO/IP connection, communication with the device is performed
via this IP address. If nothing is defined, the first found IP address
is used.
Indication of the local IP address is necessary for error-free
communication between the device and the PC when the PC
has several IP addresses.

Configure inputs and outputs
Configure here the inputs and outputs of the
board. The board has 16 ports forming a
channel in pairs. Each of the 8 channels
can be individually set.

The circles filled in black on the left show
the set inputs and on the right the set out-
puts. In order to change the configuration
click into opposite circle per channel.

Illustration 10: Inputs and outputs

_connectConfig Operating instructions _connect.BRAIN

46 38.026.297.002 en

8

8.6.3 "Devices" tab
Assign existing connections during device configuration. Depending on the device type or
family, the following settings can be made.

The CX (CWM, CWE, CWP) device family is based on the GX family.
The CX device settings correspond to those of the GX devices and are
not managed separately by the program. Consequently, you find CX de-
vices in _connectBRAIN always under the GX device family.

Settings

"Devicetype" Specification of the device type so that device-specific default set-
tings and restrictions are taken in consideration.

"Connection-type" Kind of physical connection between PC and device.
Value range according to device family:
GX: "Serial", "Profibus", "TCP/IP", "Modem"
IX (except for NT scale): "Serial", "Profibus", "TCP/IP"
IX (NT scale): "DCOM"
LX (except for CE): "Serial", "TCP/IP"
LX (CE): "RAS", "Ethernet"
SX: "DCOM"
FX (except for ADDI-Da-
ta I/O card):

"Serial", "TCP/IP"

FX (ADDI-Data I/O card): "DCOM"

"Interface" GX, IX, LW, FX:
Select configured connection via dropdown list. The list is available
after entering the connection type. Via the button on the right next
to list field, the selected connection can be configured, see
page 37.

"Dialog" GX, IX, LW, FX:
Select device dialog. The device dialog is the protocol between PC
and device. The dialogs shown in the dropdown list depend on con-
nection and device type. Via the button on the right next to list field,
the selected dialog can be configured, see page 37.

"I / O channels" only ADDI data MSX E-1516 IO board
Select configuration of inputs and outputs from list of available con-
figurations. You directly get to the configuration dialog for inputs
and outputs via the button on the right next to the selection.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 47

8

Settings

"Token-Conversion" GX, IX:
Activate or deactivate conversion via the control field.
When conversion is activated, select a conversion table in the drop-
down list. The displayed conversion tables depend on the device
type. Via the button on the right next to list field, the selected con-
version table can be configured, see page 37.
The second button on the right next to the list field opens the "Ad-
vanced properties for Token-conversion" dialog.
Activate automatic conversion, when sequences that start with a
backslash have to be converted automatically. Automatic conver-
sion has the following effects, amongst others:
"\n": This sequence stands for a line break

and is converted to the GxNet compati-
ble form "@0A" (ASCII character 10 or
0x0A).

"\\": This sequence stands for the backslash
character. Automatic conversion to "\" is
performed only in the case of data trans-
fer from the PC to the device and not
vice versa.

"Systembusad-
dress"

GX, IX (außer NT Scale), LW:
Select device system bus address.

"Logging/size" For all device types.
List field on the left: Logging type.
LW: Deactivate logging or set a logging mode. The higher the con-
secutive number of the logging mode, the more information is log-
ged. The size specification in bytes defines from which file size a
new log file is created and the old file is renamed.
Others: Activate or deactivate logging.
Input field on the right: Maximum size of a logging file in byte. If this
size is exceeded, a new log file is generated and the old file is re-
named.

"Load Receivers" IX (except for NT scale):
Open "Advanced settings for Load Receivers" window. Add up to
99 load receptors with number and individual name. Edit or delete
table entries.

"Software-Vol." GX:
Firmware version of the device. If the program version was incor-
rectly indicated, problems may occur during controlling or
querying of licenses which prevent correct functioning of the
program.

_connectConfig Operating instructions _connect.BRAIN

48 38.026.297.002 en

8

Settings

"Header-Format" GX, FX:
Select GxNet transfer format. The following formats are available
for Gx and Fx devices:
– "Gx/Ix-Net(A!, I!, A?, I?)": new format, standard for all devices
– "Gx-Net (!,?)": old format for compatibility with previous pro-

gram GxTools

"_connect2SAP" For all device types:
Open "Advanced Settings for _connect2SAP" window.
Value range:
Access: Enable multiple or only single access to

the device via other programs.
Spontaneous telegrams: Log or do not log spontaneous tele-

grams of the device.
Logging: Activate or deactivate logging of SAP in-

terface access.
Repetition attempts: Define number of repetitions in the event

of connection errors, before attempts are
terminated with an error message.

HUPast: Select gross or netto weight type for dis-
play, see page 110.

"Connection" GX, IX, SX, FX:
Set via "Hold Connection" whether the device connection is to be
permanently maintained or only established if required.
For connection to SAP: Activate "Hold Connection".
On terminal servers with _connectServer as server: deactivate
"Hold Connection".

"Virtual ES" IX, SX:
Enable access to VirtualES. Program VirtualES - Admin can be
started via <Virtual ES>. First, program _connectConfig sends cur-
rent settings to the _connectServer.

"Registry-DB" IX:
Enable or block access to the registry database for ST devices. If
required, define readout cycle in seconds. _connectServer reads
the data from the database and forwards it as spontaneous data to
the higher ranking program.

"Status" For all device types:
Activate check-box to enable the use of the device.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 49

8

8.7 _connect2File / 2File Configuration
Use button <2File> to configure programs _connect2File and 2File for file-based device
communication. Scope of functions and operation of these programs are documented in a
separate chapter of these instructions.
– For scope of functions and operation of _connect2File see page 63
– For scope of functions and operation of 2File see page 63

The configuration of 2File differs in a few aspects from _connect2File. Differences are
clearly marked.

8.7.1 Naming log files
Select the log file names so that they provide information on the content type and the rele-
vant device.

Example: record01.txt
The first part of the file name stands for the content type, for ex-
ample
– record for normal data
– error for errors

The second part of the file name stands for the device address
(01, 02, ...) or the device name.

8.7.2 "Common" tab
Here you carry out basic settings of programs _connect2File and 2File.

Settings

"Error log level:" Define the log depth for the log file.
Value range:
"User": Log all error messages.
"Normal": Log the error messages of the "Normal"

level.
"Debug": Log the error messages of the "Debug"

level.
"Warning": Log the error messages of the "Warning"

level.

"Show errors as di-
alog"

activated: The logged error messages are also in-
teractively displayed.

not activated: The error messages appear only in the
log file.

_connectConfig Operating instructions _connect.BRAIN

50 38.026.297.002 en

8

Settings

"GX-SendChannel" Transmission channel for transmitting device information when the
device is stopped. If the transmission channel is missing, the device
cannot send any data after being stopped and reports an error.
Program _connect2File activates the set transmission channel
when establishing the connection to the GX device allowing the GX
device to transmit data records to the _connect2File PC. When
closing the connection to the GX device, the transmission channel
is deactivated preventing the GX device from reporting transmis-
sion errors while _connect2File is not active.
The same transmission channel for sending information has to
be defined in the device.

"Files" Specify a process for transferring received data in a regular file.
Data received from the device are initially saved in a temporary file.
Only after releasing the data, the temporary file is converted to a
regular file. The following processes are available for this:
"Rename with Move
(Win-NT/2000)":

The temporary file is relocated and re-
named.

"Rename with Copy/
Delete (Win-9x, ME)":

Process for older systems. The tempora-
ry file is copied and then deleted.

"Do not move emp-
ty files"

activated: Empty reception data files are directly
deleted.

not activated: Empty reception data files are converted
in regular files.

8.7.3 "Files" tab

This tab is only displayed when the "_connect2File-Files" menu item is
activated in the "View" menu under "Tabpages".

Programs _connect2File and 2File manage log data of the connected devices. External
access to the primary log data is disabled. _connect2File and 2File manage output files for
access via external software. Output files are called "Backup" in the program.

Creation and management of output files are configured on tab "Files". In the navigation
area you can create and configure separate log files for a classical _connect2File system /
2File system and _connect2File / 2File systems on the clients of a terminal server.

Settings

"Log-Path" Path for storing log files. Enter absolute path directly or select folder
via <…>.

"Filetype" File name extension of log files.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 51

8

Settings

"Backup-Path" Path for storing output files (output directory). Enter absolute path
directly or select folder via <…>.

"Filetype" File name extension of output files.

only 2File

"File format" File format of output file in which it is stored:
– Default: files are stored as ANSI/ASCII file.
– Unicode: is stored as UCS-2 file and UTF16 BigEndian.
– XML: file is stored as XML file in standard UTF-8 format.

Use the <Advanced> button to open a window with additional settings for copying and data
backup ("Copy options" tab) and for accessing the output file ("Office-Applications" tab).

Settings in the window "Advanced properties for log-files"
Tab "Copy options"

"Max-Entry" Number of entries after that the log data will be moved to the output
file.

"Max-Time" Time interval after that log data will be moved to the output file.

"Copy at" Time at that log data will be moved to the output file. If an output file
with an identical name already exists in the output directory and
cannot be overwritten due to the configuration (see settings in area
"Backup-File") or if _connect2Fileis not active at the set time, no ac-
tion will take place. Not before the set time is reached again, a new
attempt is made to move the log data.

"Retry" activated: Repeat copying cyclically after errors.
not activated: Do not repeat copying after errors.

"Retry-Delay" Time interval between two copying attempts in ms.

"Header-Line" activated: Move log data to the output file after
each header change.

not activated: Move log data to output file independent-
ly from header change.

Area "Log-File"
(only _connect2File)

_connectConfig Operating instructions _connect.BRAIN

52 38.026.297.002 en

8

Settings in the window "Advanced properties for log-files"
Tab "Copy options"

"Update from the
System"

Select process for updating the log file.
Value range:
"Update from the Sys-
tem":

The log data are buffered in the system.
The collected data are converted to the
log file later. In comparison to updating
at each new entry, the system is less
loaded and the log file is less updated.

"Update after every en-
try":

The log file is updated after each write
access (flush). Thus, it is always upda-
ted. However, this process may reduce
total system speed.

"Update after every
entry"

Area "Backup-File"

"no overwriting of
file"

Enable or disable overwriting of existing output files. If overwriting
of output files is enabled, not collected output files can be overwrit-
ten with more recent data. The previous state of the output file can-
not be called up any longer."overwriting of file"

Settings in the window "Advanced properties for log-files"
Tab "Office-Applications"
(only _connect2File)

"Application" Program that is used to access the output file.
Value range:
– "none"
– "Excel"
– "Word"
– "Access"

"File" File that is used to access the output file (excel, word or access file
with macro). Enter file name directly or select file via <…>.

"Macro" Name of the macro that is used to access the output file.

8.7.4 "Devices" tab
Device specific settings are split up into two areas:

Conventional area: The classical area includes a _connect2File system and a 2File
system. The here created devices are visible for all clients and
can be used on all clients.

Terminal server area: The terminal server area contains a _connect2File system and
a 2File system for terminal server clients. The here created de-
vices are only visible on the respective client and can only be
used by this client.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 53

8

Assigning devices or changing assignments
In the navigation area select main entry "_connect2File-System" or "2 file system" or
one of the clients created under main entry "_connect2File system terminal server" or
"2file system terminal server clients".
<Change>

Assign devices
Select one or more devices in the "Available Elements" area.
Assign devices with < >> >.

Remove assignment
Select one or more devices in the "Selected Elements" area.
Remove assignment of devices with < << >.

Save changes
<OK>

Configuring device - "Input files" tab
Configure the communication between PC and device here. The communication is done
via one of the following programs:
– _connect2File / 2File (default)
– BLD (first user-defined program)
– WinCWS (second user-defined program)

Settings

Settings of selected program _connect2File, 2File, BLD or WinCWS

"Input" Path and name of the file that contains the data to be sent to the
device.

"Error" Path and name of the file that records defective data records, e.g.
transmission and syntax errors, or header not detected, see
page 71. The defective data records are not sent to the device.

"Dummy-files" Reserved for future application.

only 2File

"File format" File format of output file in which it is stored:
– Default: files are stored as ANSI/ASCII file.
– Unicode: is stored as UCS-2 file and UTF16 BigEndian.
– XML: file is stored as XML file in standard UTF-8 format.

Generally valid settings

"Read-Interval" Time interval between two read accesses to the input file in s.

"Wait-Time" Waiting time between two data records to be transmitted to the de-
vice in ms.

_connectConfig Operating instructions _connect.BRAIN

54 38.026.297.002 en

8

Generally valid settings

"Error-File" activated: Create error file only in the event of er-
ror.

not activated: Always create error file.
Even empty error files can be used to determine when-on the basis
of the moment of their creation-processing of an input file started.

"Devicestop" activated: In the event of a device stop, the input
file that is being processed will be de-
leted.

not activated: In the event of a device stop, the input
file that is being processed will be kept.

Configuring device - "Outputfiles" tab
Select the data that the device will send to the PC. The setting is made column per column
for the log files created on the "Files" tab, see page 50. Distinguish between output and
event file settings by selecting the relevant tab. Set for the output file which device data will
be transmitted to the PC. Make the settings for the device data that activates the log file
relocation in the output directory, in the relevant event file.

Use the following buttons for further processing:

<Files>: Log file configuration, see page 50
<Replace assignation> Transmit assignment of output data from one log file to another

one. Assignments can only be transmitted to log files without
proper assignment. During transmission, assignments are de-
leted from the original file.

Replacing the assignment
This function is only available when at least one log file with assignments and one log file
without assignments have been created.

Click the <Replace assignation> button in the "Outputfiles" tab.
In the "Current assignation" column of the "Replacement of files" window, select the
log file from which assignments have to be transmitted.
<Replace assignation>
In the "File-Selection" window, select the log file in which assignments have to be
transmitted.
<OK>
The selected file appears in the "Replacement of files" window under "New assigna-
tion". If required, remove the assigned log file from the view using
<Release assignation>.

<OK>

The assignments are removed from the original log file and transmitted to the selected log
file.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 55

8

Configuring device - "Application parameters" tab
Make here general settings for handling devices.

Settings

"Start-Options" activated: After starting _connect2File, establish
automatically a connection to the device.

not activated: The connection to the device has to be
started manually.

"Telegramms" activated: Receive also events initiated by the de-
vice (spontaneous telegrams).

not activated: Receive only data explicitly requested
from the device.

"Memocard" activated: Read the storage medium in the device
cyclically. Enter the reading interval in
the input field in s.

not activated: Do not read the storage medium in the
device.

"Autostop" activated: Stop device when receiving a total tele-
gram of the relevant total. Then the de-
vice has to be enabled by the superordi-
nate program.

not activated: Do not stop device when receiving a to-
tal telegram of the relevant total.

8.8 BHI Configuration
Via the <BHI> interface, the Bizerba host interface BHI is configured.

BHI is a host interface for Windows PCs for connecting the following devices:

– SC retail scales
– SW retail scales
– BS retail scales
– CE retail scales
– GX price labelers

Host definition and program sequences are created by the program BHE (Bizerba Host
Editor) that is not documented here. The host data can be processed in ASCII, CSV or
XML file format. BHE contains data converters and data transmission programs (BCS-light
and SXCom).

_connectConfig Operating instructions _connect.BRAIN

56 38.026.297.002 en

8

BHI is only required in connection with the WinCWS program and has
to be configured only when this program is used.

Settings

"System-Type/No." The system type defines the device types that can be contained in
a BHI system.
Value range: SC/SW/BS, CE, GX
The system number is the number of a subsystem. A subsystem is
a logic unit comprising a single device or a group of retail scales or
price markers, which are supplied with data or from which data are
called up separately during communication.
Value range: 1-999

"Master devices" The master device is a device in a subsystem, via which communi-
cation takes place with BHI. If more master devices are created,
these will be used as master devices for communication in the
event of failure of the first master device.
Value range: All devices of the selected system type that are cre-
ated in _connect.BRAIN.

"Slave devices" Other devices of the subsystem for which device-specific data shall
be transmitted. If no device-specific data are to be transmitted, the
list of slave devices remains empty.
Value range: All devices of the selected system type that are cre-
ated in _connect.BRAIN.

"Departments" Department-related data (e.g. PLU data) can be filtered by depart-
ment Only department-related data whose department number is
specified in the department list are transmitted. If the department
list is empty, all data records present in the host file are transmitted
to the subsystem.
Value range: 0-999

8.8.1 Adding and deleting master/slave devices and department
The procedure is for master/slave devices and departments is largely identical and corre-
sponds to the following description, by way of example. For editing slave devices or de-
partments, select the respective tab.

Adding master device
Select the BHI system to be edited in the navigation area.
Select the "Master devices" tab in the work area.
Use the <Configure object> button or the enter key to open the "Master devices" win-
dow.

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 57

8

Select the device that shall be defined as master device in the "Available Elements"
area. Only devices that have been created in the system and correspond to the de-
fined system type are displayed.
< >> >

Adding other master devices
If required, transfer other devices in the "Selected Elements" area in the same way.
Alternatively, these devices may be used as master device.

Removing master devices from list
Select the device to be deleted in the "Selected Elements" area and < << >

Terminating editing
<OK>

8.9 Wizard for creating devices

8.9.1 Creating new devices using a wizard
New devices can be generated using a wizard. The wizard guides you through the device-
specific settings to the _connectServer and possibly to _connect2File and 2File.

"Extras" / "Wizard"
<Next >>
Select function "Create a new device" and click <Next >>.

Enter _connectServer settings
Enter _connectServer settings on the following pages, see page 46. Close each page
using <Next >>.

Decide whether and how the device is to be assigned to _connect2File or 2File
Select if the device should be added to _connect2File or 2File or to none of both and
click <Next >>.
The following responses are possible:
"_connect2File": The device is added to _connect2File.
"2File": The device is added to 2File.
"no": The device is created in _connectServer but is not added to

the _connect2File or 2File configuration. In the further pro-
cedure of the wizard the settings for _connect2File or 2File
are omitted.

_connectConfig Operating instructions _connect.BRAIN

58 38.026.297.002 en

8

Answer the question which environment should be used and click <Next >>.
The following responses are possible:
"yes": The device is created in the _connectServer configuration

and assigned in the _connect2File / 2File configuration to
the associated standard _connect2File / 2File system.

"yes, add for existing ter-
minal server client":

The device is created in the _connectServer configuration
and assigned in the _connect2File or 2File configuration to
the terminal server client selected from the dropdown list.

"yes, enter name of new
terminal server client":

The device is created in the _connectServer configuration.
A new terminal server client with the name entered in the
associated input field is created in the _connect2File or
2File configuration. The new device is assigned to the new
terminal server client.

If necessary, enter _connect2File / 2File settings
On the following pages of the wizard enter input files, output files and application pa-
rameters for the _connect2File configuration, see page 52. Close each page using
<Next >>.

Completing device
Check the summed-up settings on the last page of the wizard. Use <Back> to return
to the previous page and correct settings.
Exit wizard with <Complete>.

8.9.2 Copying devices using the wizard
Devices can be copied using the wizard.

"Extras" / "Wizard"
<Next >>
Select function "Copy an existing device".
Select the device to be copied in the list field.
<Next >>
Enter the device name.
<Next >>
Make settings for connection, see page 37.
<Next >>
If the copied device is assigned to _connect2File record input files, see page 53.

or
If the copied device is assigned to 2File, record input files, see page 53.
If the device is assigned to both systems, the device is only copied for the 2File sys-
tem! If needed, manually add copied device after copy process to _connect2File sys-
tem.

<Next >>

Operating instructions _connect.BRAIN _connectConfig

38.026.297.002 en 59

8

If the copied device is assigned to _connect2File or 2File, assign output files, see
page 54.
<Next >>
Check the summed-up settings on the last page of the wizard. Use <Back> to return
to the previous page and correct settings.
Exit wizard with <Complete>.

8.10 Creating links to devices of other _connect.BRAIN clients
With function <Import devices> you create references to devices of other _connect.BRAIN
clients in your current configuration. This allows a _connect.BRAIN client (_connectCon-
trol, _connect2File, additional program) to work in a simple way with a distributed system.

"Extras" / "Import devices"
Record name of _connect.BRAIN client from which devices are to be imported in in-
put field "Computername" or select via button <..>.
<Show Devices>
Select devices for import.
<OK>

The devices appear in the _connectServer configuration on tab "Devices" under main en-
try "Network environment" and the name of the computer. They can be viewed and used,
but not configured.

_connectDiagnostics Operating instructions _connect.BRAIN

60 38.026.297.002 en

9

9 _connectDiagnostics

9.1 Overview
_connectDiagnostics provides you with an overview of the configuration and the use of the
_connectBRAIN program package. It accesses the _connectServer via the DCOM inter-
face and finds out information about:

– Program version of _connectServer and other installed components
– Activated licenses for _connect.BRAIN
– Number of users currently connected to the server with user identification and name

of the interface used
– Created devices with category, type and status

9.2 Starting the program
Call up _connectDiagnostics via the start menu.
If the start window is not displayed and the program appears only as symbol in the
information area of the task bar: Click the "_connectDiagnostics" symbol using the
right button of the mouse and select "Wiederherstellen" in the context menu.

The start window of the program appears.

Operating instructions _connect.BRAIN _connectDiagnostics

38.026.297.002 en 61

9

9.3 Program structure

Illustration 11: User interface _connectDiagnostics
1 Navigation area

2 Menu bar

3 Display area

4 Status bar

The user interface contains the following areas, in addition to typical Windows elements:

Navigation area: Shows the devices and users logged on _connectServer.
Display area: Shows information on the element that was selected in the navi-

gation area:
– Information on server (version) and licenses
– Information on device
– Information on user and interface

Status bar: Shows time of the last update.

9.4 Menu bar and toolbar functions

Functions in "File" menu

"Exit" Terminate _connectDiagnostics.

_connectDiagnostics Operating instructions _connect.BRAIN

62 38.026.297.002 en

9

Functions in menu "View"

"Refresh" Update view to show modifications.

Functions in menu "Language"
Select here a language for the user interface.

Functions in "?" menu

"Info" Show program information, see page 14.

Operating instructions _connect.BRAIN _connect2File

38.026.297.002 en 63

10

10 _connect2File

10.1 Overview
_connect2File is a user-friendly file interface for transferring BxNet data and control com-
mands in the form of ASCII files.

_connect2File is configured via program _connectConfig, see page 49.

Scope of functions of _connect2File:

– Receive spontaneous telegrams
– Package-synchronous data (weight, price, date, time, ...)
– Remote data (send on change)
– Softkey entries from user-defined mode level or authorization level
– Statistics data (totals, quantity,...)

– Acknowledge reception data according to telegram
– The data content of a telegram determines the log file(s) to which the reception

data are written. The automatic acknowledgement of total data can be sup-
pressed for totals 1, 2 and 2 and carried out later by means of a release com-
mand, see page 55.

– Prepare log files for data transfer in event-controlled mode
– Call up macros in Microsoft Word and Excel

10.2 Starting the program
Call up _connect2File via the start menu.

The start window of the program appears.

Recognition of the terminal server mode can be deactivated by means
of the following call-up parameter: BCF.exe /NoWtsDetection
This is necessary, when the Windows terminal server console is ac-
cessed via remote desktop connection and _connect2File is to be run
on the console. If the parameter has not been specified, _connect2File
runs within a remote desktop connection on the client PC and not on
the server console.

_connect2File Operating instructions _connect.BRAIN

64 38.026.297.002 en

10

10.3 Program structure

Illustration 12: User interface _connect2File
1 Menu bar

2 Tool bar

3 Connection window

4 Status bar

The user interface contains the following areas, in addition to typical Windows elements:

Connection window: Communication of each device is displayed in a connection win-
dow. The connection window shows the connection status and
the data transfer. The background color varies according to the
status:
– Yellow: establishing connection
– Cyan: waiting for switch-on message
– Green: connection open (online)
– Gray: closing connection
– Red: connection closed (offline)

Operating instructions _connect.BRAIN _connect2File

38.026.297.002 en 65

10

10.4 Menu bar and toolbar functions

Functions in "File" menu

"Start for all devi-
ces"

Initialize access to all configured devices. Open connec-
tions and and start data exchange. Any devices that have
already been started are not re-initialized.

"Stop for all devi-
ces"

Terminate data transfer for all devices. Close all connec-
tions.

"test online" Check connection to configured devices and report result
for each device.

"start" Open connection to selected device and start data ex-
change.

"stop" Terminate data transfer to selected device and close con-
nection.

"Exit" Close all connections and terminate _connect2File.

Functions in menu "View"

"logtape" Show _connect2File protocol from application start.

Functions in "Window" menu

"overlapping" Display windows in cascade format.

"arrangement verti-
cal"

Display windows next to each other.

"arrangement hori-
zontal"

Display windows next to each other.

"arrange symbols" Arrange minimized connection windows at the bottom of the
window.

example
"1 GLP"

Consecutive number and device name of displayed win-
dows. The active window is checkmarked. Select desired
window.

_connect2File Operating instructions _connect.BRAIN

66 38.026.297.002 en

10

Functions in menu "Extras"

"Language" Select user interface language. The modification does not become
active until the next application start.

Functions in menu "?"

"info about _con-
nect2File"

Show application information, see page 14.

10.5 Functions in the connection windows

Green symbol: Start device.

Red symbol: Stop device.

10.6 File transfer
An application that provides data for the devices, runs on the host. The host application
and the _connect2File program communicate by exchanging files in ASCII format. Data is
transferred via the hard disk of the _connect2File computer according to a defined proto-
col.

The WinCWS program is an example of a host application. This program provides the GX
device family with a master data ASCII file that is transferred to the GX device by _con-
nect2File.

Sample file that transfers the text "hello GX" in the text field 1 of a GX device:

Line 1: A!GT01
Line 2: hello GX

More examples can be found under C:\Programme\Bizerba\BCT\Sam-
ples\BCF Files.

Operating instructions _connect.BRAIN _connect2File

38.026.297.002 en 67

10

10.6.1 Data transfer from host to _connect2File

Illustration 13: Data transfer from host to _connect2File

1. The host generates a file in a directory the _connect2File computer has access to. To
avoid access via _connect2File during generation, the file initially gets a name un-
known to _connect2File.
or
The host generates the file in a directory the _connect2File computer has not access
to.

2. After completing transfer, the file is renamed or relocated in the _connect2File input
directory so that _connect2File can access it.

3. _connect2File reads and processes the file. In the event of transfer errors, _con-
nect2File generates an error file, see page 71. After successful processing, _con-
nect2Filedeleted the input file.

4. Only after deleting the input file, the host can provide a new input file by means of re-
naming or relocating. Until then the host collects the data in another directory or
saves it with another file name (cf. step 1).

_connect2File Operating instructions _connect.BRAIN

68 38.026.297.002 en

10

10.6.2 Data transfer from _connect2File to host

Illustration 14: Data transfer from _connect2File to host

1. First _connect2File collects the device data in a temporary file.
2. Triggered by an event such as changing the header, reaching a specified number of

lines or receiving certain data, _connect2File moves the file to the output directory
and supplies it to the host.

3. The host checks the output directory cyclically (polling). If it finds an output file, it cop-
ies or relocates the file and deletes it from the output directory.

4. New data cannot be added to files located in the output directory. Only after deleting
the old file, _connect2File can move a file with new device data to the output directo-
ry.

10.6.3 Controlling data output by events
_connect2File relocates its temporary log file in the output directory as soon as a defined
event occurs. This event may be related to files or received data. File-related events are
the following: a defined number of entries is reached, a defined period of time has elapsed,
a set time is reached or a header changed within the file. Configure these events in _con-
nectConfig on the "Files" tab of the _connect2File configuration, see page 50.

In addition to file-related events, receipt of certain input data causes relocation in the out-
put directory. Define this input data in _connectConfig by configuring the event file, see
page 54.

Operating instructions _connect.BRAIN _connect2File

38.026.297.002 en 69

10

10.6.4 File structure
The transfer files consist of headers and user data. Headers always contain information on
the data format, its attributes and the following user data. To distinguish headers from user
data lines, they start with the following identifiers:

A! Write access to labeler, new header format
Gx/Ix-Net(A!, I!, A?, I?)

I! Write access to industrial device, new header format
Gx/Ix-Net(A!, I!, A?, I?)

A? Read access to labeler, new header format
Gx/Ix-Net(A!, I!, A?, I?)

I? Read access to industrial device, new header format
Gx/Ix-Net(A!, I!, A?, I?)

The following formats are no longer supported:

! Write access, old header format
Gx-Net (!,?)

? Read access, old header format
Gx-Net (!,?)

A header is followed by one or more data records (user data). If the user data format
changes, a new header is added.

Example:
Header for data format x
User data in data format x
User data in data format x
Header for data format y
User data in data format y
User data in data format y
User data in data format y

_connect2File Operating instructions _connect.BRAIN

70 38.026.297.002 en

10

Example of a file in the new format Gx/Ix-Net(A!, I!, A?, I?), headers highlighted
A!PV04|PW02|GW09|GL19|GL1A|GL16|PD00|GL2B|GL2C CR/LF
 1|2|4711|0|1|KG;-3;100|20997|1545 CR/LF
 1|2|4711|0|2|KG;-3;100|20997|1545 CR/LF
 1|2|4711|0|3|KG;-3;100|20997|1545 CR/LF
 1|2|4711|0|4|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|5|KG;-3;100|20997|1546 CR/LF
A!PV01|PW02|PW00|PL00|PD03|PD14|GL17|GL19|GL1A|GD02|GL2B|GL2C CR/LF
 8|1|5|KG;-3;500|0|650|2|4711|0|0|20997|1546 CR/LF
A!PV04|PW02|GW09|GL19|GL1A|GL16|PD00|GL2B|GL2C CR/LF
 1|2|4711|0|1|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|2|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|3|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|4|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|5|KG;-3;100|20997|1546 CR/LF
A!PV01|PW02|PW00|PL00|PD03|PD14|GL17|GL19|GL1A|GD02|GL2B|GL2C CR/LF
 8|1|5|KG;-3;500|0|650|2|4711|0|0|20997|1546 CR/LF
 8|2|10|KG;-3;1000|0|650|2|4711|0|0|20997|1546 CR/LF
 8|10|10|KG;-3;1000|0|650|2|4711|0|0|20997|1547 CR/LF

Example of a header in the new format Gx/Ix-Net(A!, I!, A?, I?) with explanation
A!PV04|PW02|GL19|GL16|PD00|PD10|LX02 <CR/LF>

Operating instructions _connect.BRAIN _connect2File

38.026.297.002 en 71

10

A! Write access to a labeler.
PV04 !PSV_DATA

Block command for transmission of configurable and cancella-
tion-adjusted (i.e. labeled error-free) package-synchronous la-
beling data to a higher-level EDP.
No parameters in the data line.

PW02 #PSW_PCKHDL
Package handle for identification of a package in the labeling
system.
One parameter in the data line: 7

GL19 GGL_PLUNR
Currently labeled PLU no.
One parameter in the data line: 1

GL16 GGL_EINZEL_NUMERATOR
Numerator for the individual label.
One parameter in the data line: 1

PD00 #PSD_GEW_NETTO_EINZEL
Printed net weight with weight unit, value of exponent and
weight value.
Three parameters in the data line: KG, -3, 1064

PD10 PSD_PRS_VKPREIS
Printed selling price with country code and value.
Two parameters in the data line: 0, 106

LX02 LGX_CLOSE
Logical command to close a block command.
No parameters in the data line.

10.7 Troubleshooting
_connect2File processes an input file provided by the host record-by-record and sends the
single data records to the _connectServer. _connectServer transfers the data records to
the relevant device. Errors that occur during transfer are logged in an error file, see
page 53.

_connect2File Operating instructions _connect.BRAIN

72 38.026.297.002 en

10

Transmission error ("acknowledgement timeout error")
Transmission errors result from a faulty communication between _connect2File or _con-
nectServer and the device. A transmission error occurs, for example, when the device is
switched off or when it is not ready to receive for other reasons.

Format:

[TT:MM.JJJJ] [HH:MM:SS] [acknowledgement timeout error:][Header];[Datenzeile]

Example:

05:05.2011 16:59:16 acknowledgement timeout error: !GT02;Test

Data error ("parsing error:")
Data errors are syntactical or semantic errors during transmission, e.g. a missing header.

Format:

[TT:MM.JJJJ] [HH:MM:SS] [parsing error:] [Datenzeile]

Example:

05:05.2011 17:03:28 parsing error: abcdefg

Operating instructions _connect.BRAIN 2File

38.026.297.002 en 73

11

11 2File

11.1 Overview
Program 2File is a further development of _connect2File and also provides a user-friendly
file interface for the transfer of BxNet data and control commands in form of files.

New functions in 2File:
– Operating mode as service (with viewer) or as application.
– Input and output files can be configured as text file or XML file.
– Input and output text files can be coded as ASCII or as Unicode.
– The old GxNet format w/o category (example: ?GD01) is not supported.

The macro support of Microsoft Word and Excel is no longer available. The deactivation of
the terminal server mode detection is also no longer available.

11.2 Starting the program
Call up program 2File via start menu.

If 2File is installed as a service it automatically starts in the background during start of the
operating system. During execution of the link the user interface of 2File opens and con-
nects to the service. As from the time of the connection establishment all information re-
garding running equipment is displayed. The devices can also be started and stopped
here.
When the viewer is completed the service continues to run in the background.
If the service should not run it is automatically started during call-up of the viewer.

Changes to the configuration in _connect.Config become effective after
restart of the service. The connection to all connected devices must be
closed beforehand.

If the program runs in terminal server mode, 2File uses as application the _connectConfig
configuration which is the configuration set up for this terminal server client. If 2File is set
up as a service on a terminal server, the service runs with the local configuration. If in a
terminal server session there will be a connection to this service with the viewer, this local
configuration will be displayed.

2File Operating instructions _connect.BRAIN

74 38.026.297.002 en

11

11.3 Program structure

Illustration 15: User interface2File
1 Menu bar

2 Toolbar

3 Connection window

4 Status bar

Besides typical Windows elements the user interface contains the following areas:

Connection window: Communication of each device is displayed in a connection win-
dow. The connection window shows the connection status and
the data transfer. The background color varies according to the
status:
– Yellow: Connection establishment
– Cyan: wait for switch-on message
– Green: connection open (online)
– Gray: closing connection
– Red: connection closed (offline)

Operating instructions _connect.BRAIN 2File

38.026.297.002 en 75

11

11.4 Menu bar and toolbar functions

Functions in the "File" menu

"Start for all devi-
ces"

Initialize access to all configured devices. Open connec-
tions and and start data exchange. Any devices that have
already been started are not re-initialized.

"Stop for all devi-
ces"

Terminate data transfer for all devices. Close all connec-
tions.

"Exit" Close all connections and end 2File.

Functions in the "Window" menu

"overlapping" Display windows in cascade format.

"arrangement verti-
cal"

Display windows next to each other.

"arrangement hori-
zontal"

Display windows next to each other.

"arrange symbols" Arrange minimized connection windows at the bottom of the
window.

example
"1 ST"

Consecutive number and device name of displayed win-
dows. The active window is checkmarked. Select desired
window.

Functions in the "Extras" menu

"Language" Select user interface language. The modification does not become
active until the next application start.

Functions in the "?" menu

"2File" Show application information, see page 14.

2File Operating instructions _connect.BRAIN

76 38.026.297.002 en

11

11.5 Functions in the connection windows

Green symbol: Start device.

Red symbol: Stop device.

11.6 File transfer
An application providing data for the devices runs on the host. Host application and 2File
program communicate via file exchange. For file formats see page 78. Files are transfer-
red via hard disk of the 2File computer based on a defined protocol.

Program WinCWS is an example of a host application. For the GX device family this pro-
gram provides master data as ASCII file which is then transmitted to the GX device by
2File.

Sample file transmitting text "hello GX" to text field 1 of a GX device.

Line 1: A!GT01
Line 2: hello GX

For more examples see C:\Programme\Bizerba\BCT\Samples\BCF
Files.

Operating instructions _connect.BRAIN 2File

38.026.297.002 en 77

11

11.6.1 File transfer from host to 2File

Illustration 16: File transfer from host to 2File

1. The host generates a file in a directory which can be accessed by the 2File computer.
To prevent access via 2File during the creation process the file receives a name un-
known to 2File.
or
The host generates the file in a directory which cannot be accessed by the the 2File
computer.

2. After complete transfer the file is renamed or moved to the 2File input directory allow-
ing 2File access.

3. Program 2File reads and processes the file. In case of transmission errors 2File cre-
ates an error file, see page 53. After successful processing 2File deletes the input file.

4. Only after deleting the input file, the host can provide a new input file by means of re-
naming or relocating. Until then the host collects the data in another directory or
saves it with another file name (cf. step 1).

11.6.2 File transfer from 2File to host

Illustration 17: File transfer from 2File to host

1. Program 2File collects device data in a temporary file.
2. Triggered by an event such as a header change, reaching a specified number of lines

or receiving certain data, 2File moves the file to the output directory and provides it for
the host.

2File Operating instructions _connect.BRAIN

78 38.026.297.002 en

11

3. The host checks the output directory cyclically (polling). If it finds an output file, it cop-
ies or relocates the file and deletes it from the output directory.

4. New data cannot be added to files located in the output directory. Only after deleting
the old file, 2File can move a file with new device data to the output directory.

11.6.3 Controlling data output by events
Program 2File moves its temporary log file to the output directory as soon as there is a
defined event. This event may be related to files or received data.

File-related events are:
– Reaching of a defined number of entries.
– Elapsing of a defined time interval.
– Occurring of a defined time.
– A header change in the file.

Configure these events in Config on tab "Files" of the 2File configuration, see page 50.

In addition to file-related events, receipt of certain input data causes relocation in the out-
put directory. Specify input data in _connectConfig with the event file configuration, see
page 54.

11.7 File formats
The data transfer between host and 2File is effected via files. Input and output files can be
coded as ASCII or as Unicode text file or as XML file. If the coding of the input file no lon-
ger matches the coding specified in _connect.Config, the input file does not open and re-
mains in the directory, see page 53.

Additionally, an error message in the viewer is issued.

Operating instructions _connect.BRAIN 2File

38.026.297.002 en 79

11

11.7.1 Text file

File structure
The transfer files consist of headers and user data. Headers always contain information on
the data format, its attributes and the following user data. To distinguish headers from user
data lines, they start with the following identifiers:

A! Write access to labeler, new header format
Gx/Ix-Net(A!, I!, A?, I?)

I! Write access to industrial device, new header format
Gx/Ix-Net(A!, I!, A?, I?)

A? Read access to labeler, new header format
Gx/Ix-Net(A!, I!, A?, I?)

I? Read access to industrial device, new header format
Gx/Ix-Net(A!, I!, A?, I?)

The following formats are no longer supported:

! Write access, old header format
Gx-Net (!,?)

? Read access, old header format
Gx-Net (!,?)

A header is followed by one or more data records (user data). If the user data format
changes, a new header is added.

Example:
Header for data format x
User data in data format x
User data in data format x
Header for data format y
User data in data format y
User data in data format y
User data in data format y

2File Operating instructions _connect.BRAIN

80 38.026.297.002 en

11

Example of a file in the new format Gx/Ix-Net(A!, I!, A?, I?), headers highlighted
A!PV04|PW02|GW09|GL19|GL1A|GL16|PD00|GL2B|GL2C CR/LF
 1|2|4711|0|1|KG;-3;100|20997|1545 CR/LF
 1|2|4711|0|2|KG;-3;100|20997|1545 CR/LF
 1|2|4711|0|3|KG;-3;100|20997|1545 CR/LF
 1|2|4711|0|4|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|5|KG;-3;100|20997|1546 CR/LF
A!PV01|PW02|PW00|PL00|PD03|PD14|GL17|GL19|GL1A|GD02|GL2B|GL2C CR/LF
 8|1|5|KG;-3;500|0|650|2|4711|0|0|20997|1546 CR/LF
A!PV04|PW02|GW09|GL19|GL1A|GL16|PD00|GL2B|GL2C CR/LF
 1|2|4711|0|1|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|2|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|3|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|4|KG;-3;100|20997|1546 CR/LF
 1|2|4711|0|5|KG;-3;100|20997|1546 CR/LF
A!PV01|PW02|PW00|PL00|PD03|PD14|GL17|GL19|GL1A|GD02|GL2B|GL2C CR/LF
 8|1|5|KG;-3;500|0|650|2|4711|0|0|20997|1546 CR/LF
 8|2|10|KG;-3;1000|0|650|2|4711|0|0|20997|1546 CR/LF
 8|10|10|KG;-3;1000|0|650|2|4711|0|0|20997|1547 CR/LF

Example of a header in the new format Gx/Ix-Net(A!, I!, A?, I?) with explanation
A!PV04|PW02|GL19|GL16|PD00|PD10|LX02 <CR/LF>

Operating instructions _connect.BRAIN 2File

38.026.297.002 en 81

11

A! Write access to a labeler.
PV04 !PSV_DATA

Block command for transmission of configurable and cancella-
tion-adjusted (i.e. labeled error-free) package-synchronous la-
beling data to a higher-level EDP.
No parameters in the data line.

PW02 #PSW_PCKHDL
Package handle for identification of a package in the labeling
system.
One parameter in the data line: 7

GL19 GGL_PLUNR
Currently labeled PLU no.
One parameter in the data line: 1

GL16 GGL_EINZEL_NUMERATOR
Numerator for the individual label.
One parameter in the data line: 1

PD00 #PSD_GEW_NETTO_EINZEL
Printed net weight with weight unit, value of exponent and
weight value.
Three parameters in the data line: KG, -3, 1064

PD10 PSD_PRS_VKPREIS
Printed selling price with country code and value.
Two parameters in the data line: 0, 106

LX02 LGX_CLOSE
Logical command to close a block command.
No parameters in the data line.

File coding
Text files can be saved as ASCII/ANSI or as Unicode file. ASCII characters are coded in
expanded 8 bit format. This also includes special characters depending on the code page
such as an Umlaut for a German system.

11.7.2 XML file

File structure
The XML file structure applies to both input
files and output files. An XML file for 2File
has got at least the following structure
(empty XML file, i.e. without specifying any
command). Illustration 18: Example XML file

The first line includes the XML declaration. This is followed by the top element of the XML
file. This element must include all commands. Here, the structure header and user data
line no longer exists.

2File Operating instructions _connect.BRAIN

82 38.026.297.002 en

11

Each command consisting of one or more headers and the user data is subsequently add-
ed as one or more elements. The command creates the start and end tag of the element
and the data of the command the element content.

Comparison between text file and XML file
Here, the command consists of only one
header. The first header of a command in-
cludes information if this is a read or a write
command and from which category the
command comes from.

This information is saved as attribute.

Illustration 19: Example text/XML

Attribute CMD indicates if this is a read or a write command. Attribute CAT indicates the
category such as I. The abbreviation preceding a header in a text file is defined this way in
the XML file.

The start tag is here <GD04>. This is header GD04.

Between start and tag is the user data of the command, here kg;0;0.

For commands w/o user data they are simply omitted (example: <RX01></RX01>).

Each header forms an own element below the top element <DataSets>.

Example text file Example XML file

I?GD04

kg;0;0

I?GT04

Text

Operating instructions _connect.BRAIN 2File

38.026.297.002 en 83

11

Block commands include other commands. Here, included commands create the element
content of a block command until its closing header.

Example block command
I!LV01|GD01|GD02|GV02|GW04|GT02|LX02|GL0A|LX02

kg;-3;3755|kg;-3;0|01|123|000001

Example XML file

The first block command <LV01> opens the sequence. Since this is the first command of
the header it includes relevant attributes. Its element content now create all other com-
mands of the header.

In the text file the block command is completed with LX02. In the XML file the end tag of
the block command indicates the end </LV01>. This is representing LX02. If the com-
mands are extracted from the XML file and converted to the text file style the end tag of a
block command must be replaced by LX02!

Block commands can include other block commands. Also here their element content form
all included commands, see GV02. The included commands should be shown indented for
better readability.

11.8 Troubleshooting
Program 2File processes an input file provided by the host record-by-record and sends in-
dividual data records to the _connectServer. The _connectServer transfers the data re-
cords to the relevant device. Errors that occur during transfer are logged in an error file,
see page 53.

2File Operating instructions _connect.BRAIN

84 38.026.297.002 en

11

Transmission error ("acknowledgement timeout error")
Transmission errors result from a faulty communication between 2File or _connectServer
and the device. A transmission error occurs, for example, when the device is switched off
or when it is not ready to receive for other reasons.

Format:

[TT:MM.JJJJ] [HH:MM:SS] [acknowledgement timeout error:][Header];[Datenzeile]

Example:

05:05.2011 16:59:16 acknowledgement timeout error: !GT02;Test

Data error ("parsing error:")
Data errors are syntactical or semantic errors during transmission, e.g. a missing header.

Format:

[TT:MM.JJJJ] [HH:MM:SS] [parsing error:] [Datenzeile]

Example:

05:05.2011 17:03:28 parsing error: abcdefg

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 85

12

12 _connect2DB

12.1 Overview
By means of _connect2DB you transmit device data to a MS Access database or to a MS
SQL-Server. Freely definable filters allow you to limit the data volume according to require-
ments. Device data can be exported from the database and made available for other pro-
grams. Unicode characters are supported.

12.2 Starting the program
Call up _connect2DB via the start menu.

The start window of the program appears. When configured accordingly, the connections
to the devices created on the _connectServer are established automatically.

12.3 Database setup
When using _connect2DB for the first time, the database setup wizard starts automatically.
If during start of _connect2DB program DBConvert is called up, the SQL database must be
prepared for Unicode, see page 104.

The wizard can also be directly started via C:\Programme\Bizerba\BCT
\BCT2DB\DBConfig.exe.

_connect2DB Operating instructions _connect.BRAIN

86 38.026.297.002 en

12

When setting up the database, choose between the following database types:

Database
type

Benefits Disadvantages

Microsoft Ac-
cess

– Easy operation
– Easy administration
– Easy creation of evaluations

– Only suitable for small data
quantities (slow from 20,000
data records, performance no
longer acceptable from 50,000
data records)

– High storage requirements on
local computer

– Data security not as high as
with MS SQL Server

– Access to the data stock by
more than one system prob-
lematic

Microsoft
SQL Server
(recommen-
ded)

– Quick data access even with
high volume of data

– simplest version (Express)
available free of charge

– Access to a database from dif-
ferent programs possible

– Load distribution by installing
database and programs on dif-
ferent computers

– Database more stable than MS
Access

– Higher administrative cost
– More complex training as with

MS Access; but it is possible to
access data stock via MS Ac-
cess.

It is recommended to use MS SQL Server as from version 7.0. This ver-
sion is easily scaleable. This will guarantee data security and access
speed even with large data volumes.

Before setting up a MS SQL Server database, the MS SQL Server has to be installed and
set up.

Select the database type in the first step of the wizard.
<Next >>

Set up a MS Access database
Confirm the available storage space display.
If there is enough storage space, a MS Access database called BCT2DB.dat is created
in directory C:\ProgramData\Bizerba\BCT\db.

Set up a MS SQL Server database
Select server. Enter user name and password for establishing the connection to the
MS SQL Server.
Database BCT2DB is set up on the MS SQL Server.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 87

12

Completing database setup (for both database types)
<Complete>

12.4 Database structure
The database structure is identical for MS Access and MS SQL Server:

– Each filter corresponds to a database table with the same name.
– Each filter element correspond to a column of the database table. Column name is

the underlying device command. The columns are of type nvarchar(255) for a SQL ta-
ble and for a MS Access table of type varchar(255) since for Access all characters are
automatically saved as Unicode. Whether empty table columns are created or not de-
pends on the filter configuration, see page 90.

– Each table contains also the following columns:
– Column "INSERT_TIMEDATE" of type "datetime" and "date/time". This column

contains the moment of time when the relevant line has been written in the data-
base.

– Column "DEVICE" of type nvarchar(255) and varchar(255). This column contains
the device name as configured in _connectConfig where the data package or de-
vice commands originate from.

– Each line contains a data packet from a device.

_connect2DB Operating instructions _connect.BRAIN

88 38.026.297.002 en

12

12.5 Program structure

Illustration 20: User interface_connect2DB
1 Menu bar

2 Toolbar

3 Display area

4 Error area

5 Status bar

Besides typical Windows elements the user interface contains the following areas:

Display area: Shows status information of devices and filters.
Error area: Can be switched on or off. Lists rejected data records.
Status bar: Displays if MS Access or MS SQL Server is used.

12.6 Menu bar and toolbar functions

Functions in the "File" menu

"Export..." Export data, see page 98.

"Exit" Terminate all data transfer, close connections and termi-
nate _connect2DB.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 89

12

Functions in the "Data filter" menu

"Add..." Set new filters, see page 90.

"Manage..." Change existing filter, see page 92.

"Default data" Set-up of default data for GX and IX equipment.

Functions in the "Devices" menu

"Manage..." Add to or remove devices from _connect2DB configuration and set
devices.

Functions in the "Extras" menu

"Options..." Make _connect2DB settings, see page 101.

"Clear contents of
database..."

Delete database contents of defined period, see page 103.

"Language" Change user interface language.

Functions in the "?" menu

"Info..." Show application information, see page 14.

Functions that are only available in the toolbar

"Start all devices"
Start data transfer for all devices and filters.

"Stop all devices"
Stop data transfer for all devices and filters.

"Start device"
Start data transfer only for selected device.

"Stop device"
Stop data transfer only for selected device.

"Clear discarded data"
Empties the display for discarded data.
Only available if discarded data should be displayed.

_connect2DB Operating instructions _connect.BRAIN

90 38.026.297.002 en

12

12.7 Defining filters
Filters are used to collect selected data from the data flow of a connected device. A wizard
is available for creating filters.

12.7.1 Creating filter using the wizard
The device used for determining data records has to be connected and ready for use. The
device must be enabled for manual release of data records. With GX and CX devices pro-
vided with storage medium, it is also possible to read data records from the storage medi-
um.

End all connections to the device.
"Data filter" / "Add..."
Select a device for determining the data records to be filtered in the "Name" drop-
down list.
Only with GX/CX devices: In dropdown list "Channel Control" select setting "no
channel control" or a channel for the transmission of data. The setting must match the
device setting.
In the dropdown list "IxNet Converting (@41 --> A)", select whether and how data has
to be converted.
The following settings are possible:
– "No BxNet conversion"
– "Ansi conversion (@41 -->A)"
– "UTF8 conversion (@E2@82@AC --> €)"

<Next >>
Enter a comprehensive name for the new filter.
The filter name is also used for the relevant database table.
Permitted characters: upper case, lower case, numbers and spaces. Spaces or digits
at the beginning of a name are not permitted.
Characters not permitted: . / \ @

No differentiation is made between upper/lower case in filter names.

<Next >>
For registration, activate data transfer of the device, e.g. transmission of total informa-
tion.

or
Only with GX/CX devices with storage medium: Click <Memocard> when data re-
cords should be read from a storage medium instead of spontaneous telegrams.
If one or more data records are read by the storage medium a selection window ap-
pears. Select here the desired data record and click <OK>. If the desired data record is
not available, click <Cancel> and re-read storage medium.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 91

12

Select telegram or data record and confirm it with <OK>.
The commands set under "Options..." (default data, see page 101) and the commands
that have been received during registration are available for saving in the database ta-
ble.

Deactivate check-box for data that is not to be saved in the database table.
If only data records that contain the selected data in the specified order are to be writ-
ten in the database table, activate the "Only evaluate data in the telegram, which cor-
respond to the indicated sequence." check-box.
Select the device whose data is to be filtered accordingly.
Only with GX/CX devices: Select whether the channel control has to be used and
specify the channel, if necessary.
Only with GX/CX devices: By activating or deactivating the corresponding check-
boxes, specify whether spontaneous telegrams from the device shall be received or
the storage medium shall be read.
The "spontaneous telegrams" check-box is automatically activated for devices of other
device families.

Create filter with <Complete>.

The filter information is written to file C:\ProgramData\Bizerba\BCT\config\BCT2DB
\2DBRules.xml. It is not saved user- specifically, but it is valid for all users. Files must not
be changed by the user!

12.7.2 Creating filters manually
"Data filter" / "Manage..."
In the "Data File Administration" window, the following buttons are available:

<New Filter>
Define new filter.

<Save>
Save all data filters.

<New Filter>
A new filter is displayed in the navigation area.

Rename filter, see page 92
Assign device and make device-specific settings, see page 92.
Create list of commands to be evaluated, see page 92.
<Save>
<File> / <Close>

_connect2DB Operating instructions _connect.BRAIN

92 38.026.297.002 en

12

12.8 Renaming filters
You can rename filters even if the table already includes data. A new empty table is cre-
ated and the table with the old name remains. Changes become effective after clicking
<Save> or close window and save changes. Use a comprehensive name. The filter name
is also used for the relevant database table.

Permitted characters: upper case, lower case, numbers and spaces. Spaces and digits at
the beginning of the name and spaces at the end of the name are not permitted.

Characters not permitted: . / \ @

No differentiation is made between upper/lower case in filter names.

"Data filter" / "Manage..."
Right-click the filter to be renamed.
In the context menu select "Rename".
Enter a new name and confirm using the enter key.

12.9 Edit filter
The filter management is used to edit existing filters and view the related database tables.
The display is divided into the following tabs:

"Commands / Data": List of device commands which the filter evaluates.
"Devices": List of devices whose data the filter evaluates.
"Data Browser": Display of already read table data.

The following buttons are available:

<New Filter>
Define new filter.

<Save>
Save all data filters.

<Re-load table>

"Data filter" / "Manage..."
Select filter to be edited in the navigation area.
The related data is shown in the display area.

Assign devices and make device-dependent settings
Select the "Devices" tab.
Activate check-boxes of devices whose data the filter shall evaluate.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 93

12

Click category check-boxes in order for the selected equipment of this category to be
transferred.
Only one category but multiple devices of the same category may be selected.

Select device and make relevant settings.
Please, make device settings in menu "Devices" / "Manage...".

Settings

"Channel Control" Only for GX/CX devices.
Deactivate channel control or select channel to be used for
data transfer.

"use MemoCard" Only for GX/CX devices.
activated: Read out memory card regularly.
not activated: Do not read out memory card.

"spontaneous tele-
grams"

activated: Receive data initiated by the device (spontaneous
telegrams).
not activated: Receive only requested data.

"IxNet Converting
(@41 --> A)"

Deactivate conversion or select conversion type.

Editing list of commands to be evaluated by means of filter
Select the "Commands / Data" tab.
On the tab, the following tabs are available for editing:

Move line upwards.

Move line downwards.

Editing lines
Click the field to be edited on the "Commands / Data" tab and select the desired field
name or command in the dropdown list.

Saving data filter management
<Save>

12.10 Device menu
Here you can add to and remove devices from the _connect2DB configuration and set de-
vices used.

Click <Save> to save changes and to close the window.

_connect2DB Operating instructions _connect.BRAIN

94 38.026.297.002 en

12

12.10.1 Change window devices

Illustration 21: Change devices

Click <Change>.
A window opens in which you can add or remove devices in the _connect2DB configu-
ration. A filter must not necessarily be assigned to a configured device. In this case all
data of the device will be discarded.

Illustration 22: Add / remove devices

Select device from list.
Available devices are listed on the left
and selected devices are listed on the
right. You can select up to 40 devices.

Discarded data is saved in folder C:\ProgramData\Bizerba\BCT\log
\BCT2DB\Stdlog\.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 95

12

12.10.2 Device settings

Illustration 23: Device settings
If a device is selected from the list, available settings will be displayed.
Channel control (only
GX/CX)

Deactivate channel control or select channel to be used for data
transfer.

Memory card + interval
(only GX/CX)

activated: Read memory card on a regular basis with specific in-
terval in seconds.
not activated: Do not read out memory card.

BxNet conversion Deactivate conversion or select conversion type.
Spontaneous telegrams activated: Receive data initiated by the device (spontaneous

telegrams).
not activated: Receive only requested data.

AutoStart activated: When starting the program, automatically establish
connections to the device and start data transfer.
not activated: No automatic start of data transfer.

_connect2DB Operating instructions _connect.BRAIN

96 38.026.297.002 en

12

12.11 Default data
In this menu you can define default data
which should be offered as possible filter
criteria when creating filters by means of the
wizard. Add selected data from field "Availa-
ble Elements" to field "selected elements"
and back using the buttons. The default da-
ta is divided into IX and GX/CX category.

Illustration 24: Default data

"selected elements" Commands that are always available as possible filter criteria
when defining filters (default data).

"Available Elements" Available commands that can be used as default data.

12.12 Defining handling of complex device commands
In the default setting, only simple device commands can be selected as filter criteria in
_connect2DB. Device commands with a complex structure comprising a number of values
and texts must first be made known to the program.

Define the handling of device commands with complex data structure or variable number
of parameters in the Collection_Command.dat configuration file. Each line contains a re-
placement command related to a complex device command.

Example:
– GV02|GW05|GT03|LX02;%HGW05%_%DGW05%;%DGT03%
The lines contain the following elements that are separated by a semicolon:
– Header of the device command with a variable number of parameters for identification

of the command in the data flow (GV02|GW05|GT03|LX02)
– Definition of a new header for designation of the column in the database table

(%HGW05%_%DGW05%)
– Definition of the value that is written in the database (%DGT03%)

Commands with a complex structure have the letter V (GV02) at the second position as op-
erand code.

Character strings that are enclosed in percentage signs are interpreted. Other characters
are transferred unchanged.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 97

12

The first character after the percentage sign defines the information type:
– %H... stands for a header.
– %D... stands for a value.

When receiving device commands, the program searches for headers that are defined in
the configuration file. When a suitable command is found, the received data will be re-
placed according to the relevant command for storage in the database table.

Example 1: Resolution of a device command with a variable number of parameters
into a replacement command with one parameter
Instead of saving the received device commands, this replacement command saves the
new header and the new value that have been defined in the Collection_Command.dat.

Line in the Collection_Command.dat configuration file:
GV02|GW05|GT03|LX02;%HGW05%_%DGW05%;%DGT03%

Received data packet:
GV02|GW05|GT03|LX02 ; 2|Hallo

Storage in the database table:
GW05_2 ; Hallo

The name of the first parameter (GW05) and the value of the first parameter (2) are connec-
ted by an underscore to form the name of the replacement command. This is also the
name of the filter element or of the column in the database table (GW05_2). The value of the
second parameter (Hallo) is saved as value of the replacement commands or contents of
the database column.

Example 2: Resolution of a device command with a variable number of parameters
into more replacement command with several parameters
This replacement command lists the single commands with their respective parameters.

Line in the Collection_Command.dat configuration file:
GV01|GW03|GD01|GD02|GD07|LX02 ; %HGW03%|%HGD01%|%HGD02%|%HGD07% ; %DGW03%|
%DGW01%|%DGW02%|%DGW07%

Received data packet:
GV01|GW03|GD01|GD02|GD07|LX02 ; 1|1.0|2.1|3.4

Storage in the database table:
GW03|GD01|GD02|GD07 ; 1|1.0|2.1|3.4

The database columns GW03, GD02, GD02 and GD07 receive the values 1, 1.0, 2.1 and 3.4.

The replacement command of this example resolves the device command with a variable
number of parameters without generating new pseudo commands. The following simple
formula obtains the same result:

_connect2DB Operating instructions _connect.BRAIN

98 38.026.297.002 en

12

GV01|GW03|GD01|GD02|GD07|LX02;*;*
The asterisks cause only the sequences GV01 and LX02 to be deleted from the data packet.
The remaining data is transferred unchanged.

12.13 Deleting filters and relevant database tables
Deleting filters

"Data filter" / "Manage..."
Right-click the filter to be deleted.
In the context menu, select "Clear...".
The filter is deleted without query. If data related to the filter has already been read, the
corresponding database table appears in the navigation area under "Tables w/o Fil-
ters" and can be viewed in the display area.

Deleting the relevant database table
Right-click database table in the navigation area under "Tables w/o Filters".
In the context menu, select "Clear...".

The table is deleted without query.

12.14 Exporting data
The data imported in _connect2DB can be exported in the following formats:

"Comma Separated Val-
ues (*.CSV)"

Export in a text file with a semicolon (;) as separator.

"Microsoft Excel (.XLS)" Export in file format of Microsoft Excel.
"Microsoft Access
(.MDB)"

Export in file format of Microsoft Access.

During export, data is copied and not deleted from _connect2DB.

<Exporting data>
or

Via the "File" menu, select "Export...".
Program _connect2DB.Export starts.

Program _connect2DB.Export can also be called up separately via
the start menu.

Select the export format in the "Type" dropdown list.
<Forward >>
Select at least one data filter or one database table as data source.
<Forward >>

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 99

12

Enter the period from which data has to be exported.
Depending on the selected data source, the devices from which the data to be expor-
ted originates are displayed.

If only data of certain devices is to be exported, deactivate the check-boxes of the
other devices.
<Forward >>
Enter path and name of the export file or search for them using the <...> button.
Activate function "Change numeric IX values" if decimal numbers and values with unit
have to be converted according to the configuration of _connect2DB, see page 101.
Activate function "Export of weight values without unit" if the unit of the value should
not be exported.
Activate function "No header exported" if no header should be created. A header de-
scribes the following data records.
"Separator for weight values with unit" set to desired value.
– 1: used in the system
– 2: decimal point
– 3: point

<Finish>

If no data is available, an error message is displayed. Otherwise export starts.

12.15 Data export via command line
Exporting of database tables can also be started via the command line. The following pa-
rameters are available:

Parameter Description
-export Program start without user interface (silent mode).

-table Name of the table to be exported.

-period Period from which data has to be exported. Value range:
– thisday: All data with current date.
– yesterday: All data of previous day.
– thisweek: All data of current week (from Monday incl.).
– lastweek: All data of previous week (Monday to Sunday).
– thismonth: All data of current month.
– lastmonth: All data of previous month.
– thisyear: All data of current year.
– lastyear: All data of previous year.
Example: -period yesterday
All data of the previous day will be exported.

_connect2DB Operating instructions _connect.BRAIN

100 38.026.297.002 en

12

Parameter Description
-from Period from which data has to be exported.

Usable as an alternative to the -period parameter. Enter date and time
in the format set under Windows.
German format, for example:
-from 21.05.2010 14:30 -to 21.05.2010 14:50

-to

-format Output format of data.
Value range: CSV, XLS, MDB

-file Path and name of output file.
Example: -file c:\temp\export.csv

-withoutUnit Same as option "Export of weight values without unit"
Specify parameter to activate option.
Default setting: not activated

-noDimChange Same as option "Change numeric IX values"
Specify parameter to prevent conversion of values!
Default setting: Values are converted.

-exportHeader Same as option "No header exported"
Specify parameter if header should be exported!
Default setting: Do not export header

-seperator Same as option "Separator for weight values with unit":
Value range:
– 1: used in the system
– 2: decimal point
– 3: point
Default setting: 1

-showMessage After completion of export display success or error message.
Specify parameter to activate option.
Default setting: not activated

Example of an export call-up from the command line
DBExport.exe –export –table Registrierung – from 02.03.2005 01:23 –to
03.09.2011 05:17 –format CSV -file c:\temp\export.csv –exportHeader –withoutU-
nit –separator 3 –showMessage
Export file export.csv is saved in directory C:\temp w/o start of the DBExport user inter-
face. It contains all the data that has been imported in the mentioned period using the "Re-
cording" filter. The headers of the table columns are exported. Dimensional values are ex-
ported w/o unit, with decimal separator "Point". After completion of the export a success or
error message should be issued.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 101

12

12.16 Configuring _connect2DB
Via menu item "Extras" / "Options" you configure program _connect2DB. The configuration
is stored in file C:\ProgramData\Bizerba\BCT\config\BCT2DB.xml.

_connect2DB Operating instructions _connect.BRAIN

102 38.026.297.002 en

12

Illustration 25: Options

Settings on tab "window"

"Start mode of _con-
nect2DB"

Display of program window after program start.
"Minimized": The program starts in a minimized

window and can be displayed using
the task bar.

"Normal": The program starts in a window that
can be moved and scaled on the
screen.

"Maximized": The program starts in a window maxi-
mized to the screen size.

"Display rejected data
sets."

activated: The last three data records, that have not been saved
in the database table due to the filter criteria, are listed in the
lower part of the display area (error display). The list contains
the rejected data records with the following data:
– Date and time of transmission
– Device from which data originates
– Filters used
– Data record

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 103

12

12.17 Deleting database contents
During data export, data is not deleted. The following options are available to delete data-
base contents:

– Delete database by means of integrated mechanisms (especially when MS SQL Serv-
er is used).

– Delete database contents using the _connect2DB.Delete program. The program is
available via the _connect2DB menu.

"Extras" / "Clear contents of database..."
Enter password.
<Forward >>
Enter the creation time of the database contents to be deleted.
<Forward >>
Select database tables whose data is to be deleted.
<Complete>
Check and confirm security query.

12.18 Backing up and reloading data
The _connect2DB program supports data backup when a MS Access database is used.
Enter the settings for data backup and restore in the _connect2DB configuration, see
page 101. Only data stored in the MS Access database is backed up. Filters are not
saved.

With the MS SQL Server, use the corresponding Microsoft data backup
tools.

"Extras" / "Options"
Saving data manually

Open the "Backup" tab.
<Carry out backup now>
A backup file is saved in the configured target directory.

Saving data automatically
Open the "Backup" tab.
Activate "Backup database every day" and enter the time for daily backup, see
page 101.
The data is automatically backed up at the set time every day.

Loading data backups
Open the "Restore" tab.
<Load backups>
Select backup file.

_connect2DB Operating instructions _connect.BRAIN

104 38.026.297.002 en

12

<Forward >>

When loading data backups, the current data gets lost. Save the
current data before loading data backups.

After checking the security query, click <Finish>.
Enter password and confirm.

The selected data backup will be loaded.

12.19 Convert DBConvert database
For the configuration of an existing SQL database _connect2DB automatically opens a
wizard to convert its table to Unicode. This conversion is necessary to allow error-free
functioning of the program.

The wizard can also be directly started via C:\Programme\Bizerba\BTC
\BTC2DB\DBConvert.exe.

This process may take several minutes or hours depending on the SQL
server. It is recommended not to cancel this process.

Creation of a data backup
Perform backup of existing database.
Click <Next >>.

Overview of selected database
In this step the name of the database, user and existing tables are displayed.

Click <Next >>.
Overview of conversion
In this window you can see which tables can be automatically converted and which tables
can be manually converted at a later time, if needed.
Tables marked with a red "X" are too large (> 4.000.000 data records) to be processed us-
ing the wizard.

Click <Next >>.
Tables processed one after another. In the last column you can see a progress bar.
The conversion of a database table column may take several minutes depending on
the number of data records.

Operating instructions _connect.BRAIN _connect2DB

38.026.297.002 en 105

12

Completion of conversion
As a last step you will see a success message and possibly not correctly converted tables
as a list.
Reasons for an incorrect conversion
– SQL server timeout: The SQL server has sent back a timeout w/o explanation of any

reasons. Reasons for a timeout could be:
– Less performance of server computer
– Many data in one data record

– Error in conversion: An error occurred during conversion. This error is displayed and it
will be continued with the next table. Possibly appeared errors can be found in the log
file under C:\ProgramData\Bizerba\BCT\log\BCT2DB - Convert\Log
Possible errors:
– Line length exceeds the maximum (8060 bytes)
– Server can no longer be reached
– Insufficient hard-disk space

_connect2SAP Operating instructions _connect.BRAIN

106 38.026.297.002 en

13

13 _connect2SAP

13.1 Overview
_connect2SAP connects the Bizerba device world to the SAP environment. The program
consists of the following components:

– _connect2SAP Frontend, see page 112
– _connect2SAP Registry, see page 113
– _connect2SAP Spooler, see page 113
– _connect2SAP Viewer, see page 114

13.2 Installation
If the _connect2SAP components have not been installed together with _connect.BRAIN,
execute the _connect.BRAIN setup again to install this component. Select "Change", set
the "_connect2SAP" option and follow the instructions on the screen.

Before installing _connect2SAP, make sure SAP GUI is installed. If
SAP GUI has not been installed yet, install it prior to the _connect2SAP
component.

The components _connect2SAP Registry and _connect2SAP Spooler can be installed as
service or program. Installation as service has the advantage that the communication will
be activated automatically whenever the PC is started. Otherwise the components have to
be manually started via the start menu.

Please take into account that the services have a service name and a
display name which both differ from the exe file name. To start or termi-
nate services via the command prompt using net start/stop, the serv-
ice name or display name may be used.

Service names:
– Connect2SapRegistry
– Connect2SapSpooler

Display names:
– Bizerba _connect.BRAIN SapRegistry
– Bizerba _connect.BRAIN SapSpooler

Exe files:
– BCT2SAPRegistry.exe
– BCT2SAPSpooler.exe

Changing operating mode later (service/program)
Call up the command line window via the start menu.

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 107

13

Go to the installation directory (usually: C:\Programme\Bizerba) and there to the ..
\BCT\BCT2SAP subdirectory.

Setting as service
BCT2SAPRegistry.exe -service

or
BCT2SAPSpooler.exe -service

Setting as program
BCT2SAPRegistry.exe -regserver

or
BCT2SAPSpooler.exe -regserver

Setting to "Automatic" for "Start type" service
Open the "Services" windows via the system administration.
Open the "Properties" of the service via the context menu.
Set "Start type" to "Automatic".

Terminating service and deleting entries from the registry
<Start> / "Administration" / "Services"
Terminate the service via the context menu.
Go to the command line window.
BCT2SAPRegistry.exe -unregserver

or
BCT2SAPSpooler.exe -unregserver
Close command line window.

13.3 Configuration

13.3.1 _connect2SAP configuration
Configure _connect2SAP using the _connectConfig program, see page 36.

_connect2SAP Operating instructions _connect.BRAIN

108 38.026.297.002 en

13

13.3.2 SAP configuration
To control the _connect2SAP server from the SAP system, the connection data on the R/3
side has to be maintained. The technical properties of the RFC connection are summed up
under a logical name that is indicated in a program that was edited in the SAP program-
ming language ABAP. Thus, when developing the ABAP client, the large amount of con-
nection data must not be manually entered any longer. The connection data is exclusively
maintained using the SAP transaction SM59. First create a RFC destination as described
below. There are two possibilities for activation:

<Start-up>: When using the <Start-up> activation mode, communication be-
tween SAP and _Connect.BRAIN is established via _con-
nect2SAP Frontend.

<Recording>: Create a registered server using <Recording>. The communica-
tion is carried out via the program components _connect2SAP
Registry and _connect2SAP Spooler. In the "Program ID" field,
specify the name used by _connect2SAP Registry or _con-
nect2SAP Spooler when logging on SAP gateway. This is the
"SAP Destination" registered in _connectConfig, see page 36.

In the SAP system, open the "SAP Easy Access" windows.
Select "SAP menu" / "Tools" / "Administration" / "Management" / "Network" / "SM59 -
RFC destinations".
Select "TCP/IP connections" in the "Display and maintenance of RFC destinations"
window and click <Create>.
Create a RFC destination with the following properties:

Input field Value Description

RFC destination in the examples:
DEST_Z_RFC_BCT_F
RONTEND or
DEST_Z_RFC_REG

Name of RFC destination. SAP ap-
plications use this name to access
the RFC destination, see
page 110. The name is freely se-
lectable.

Connection type T TCP/IP connection

Deactivate the "Trace" checkbox for standard operation to avoid that
the system will be excessively loaded due to the large amount of in-
coming trace data. Activate it only when you need trace files for
troubleshooting. Delete trace files generated by the SAP system via
the "delete SAP Trace" checkbox in _connectConfig.

Activation using start-up
<Start-up>
<Front end workstation>

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 109

13

In the "Program" field, specify the _connect2SAP Frontend program with the complete
path.

Illustration 26: RFC destination DEST_Z_RFC_BCT_FRONTEND, activation using
start-up

Activation using registration
<Recording>
As "Program ID", enter the "SAP Destination" that has been registered in _connect-
Config, see page 36.

Illustration 27: RFC destination DEST_Z_RFC_BCT_REG, activation using registration

_connect2SAP Operating instructions _connect.BRAIN

110 38.026.297.002 en

13

Start _connect2SAP Registry or _connect2SAP Spooler and test the connection using
the SM59 transaction.
When the connection is established, a log with the duration of the transmission time for
the individual data packets will be generated.

13.3.3 Packing table configuration
The configuration described below is required for using the Packing table function (trans-
action Hupast) in SAP and connecting it to _connect.BRAIN. This function is used to regis-
ter the weight of incoming deliveries.

Illustration 28: SAP packing table (Hupast transaction)

The packing table data is maintained in the Hupast_C transaction. Complete the scale as
described below.

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 111

13

I _connectConfig, the "Hold Connection" checkbox has to be activated
for the specified scale, see page 46.

In SAP, open the packing table profile (Hupast_C transaction)

Illustration 29: SAP packing table profile (Hupast_C transaction)

_connect2SAP Operating instructions _connect.BRAIN

112 38.026.297.002 en

13

Make the following settings in the "scale" area.

Pay attention to upper and lower case when entering the scale
name and the RFC destination.

Input field value Description

Connect scale activating

RFC destination In this example:
DEST_Z_RFC_BCT_F
RONTEND

Name of RFC destination created
in SM59 which has to be accessed.
Select RFC destination with
<Start-up> setting via
<Front End-Workstation>, see
page 108.

Scale name In this example: ST Name of the scale as created in
_connectConfig.

13.4 _connect2SAP Frontend
_connect2SAP Frontend supports communication between SAP and _connect.BRAIN via
Frontend. The advantage of this program is that all settings are identical for each PC in
SAP even if different devices are connected to each PC.

To work with the program, use start-up via
the Frontend workstation for activation in
the RFC destination (SM59 transaction),
see page 108. If SAP accesses the RFC
destination, _connect2SAP Frontend starts
automatically and handles communication
with _connect.BRAIN. After transmitting the
data, the program sends the result to SAP
and ends.

Illustration 30: Communication via Frontend

Possible functional components

– Z_RFC_BCT_MULTI, see page 117.
– Z_RFC_BCT, see page 116.

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 113

13

13.5 _connect2SAP Registry and _connect2SAP Spooler
The programs _connect2SAP Registry and _connect2SAP Spooler support communica-
tion between _connect.BRAIN and SAP via a RFC destination. They can be installed as
service or as program. During start, these components log on the SAP system using the
"SAP Destination" specified in _connectConfig, see page 36. In SAP, "SAP Destination" is
registered as program ID in the RFC destination. As soon as SAP uses the RFC destina-
tion, SAP tries to establish a connection, transfer data to the program and return the re-
sults to the SAP system by using the program ID.

The advantage of this procedure is that only
one PC is used for communication with the
devices. All SAP programs can establish a
connection to this PC.

Illustration 31: Communication using _con-
nect2SAP Registry and _connect2SAP
Spooler

_connect2SAP Registry
Via _connect2SAP Registry, the SAP system can communicate with the devices, e.g. to
determine weight values of a scale.

Possible functional components

– Z_RFC_BCT_MULTI, see page 117
– Z_RFC_BCT, see page 116

_connect2SAP Spooler
_connect2SAP Spooler supports communication between SAP and _connect.BRAIN when
printing. SAP uses this component to send print jobs to the server. The spooler manages
the print jobs and handles errors. Print jobs can be deleted using the corresponding _con-
nect2SAP Viewer monitoring program.

_connect2SAP Operating instructions _connect.BRAIN

114 38.026.297.002 en

13

Example of a print job
szHeader = I|PV01|PW00|PW02|GW09|GT01|LX02
szData = 0|1|2|Testlabel|ST

PV01: Print command
PW00: Label type
PW02: Handle
GW09: Labeling mode
GT01: Text field 1
GT02: Text field 2
LX02: End of a V command

Possible functional components

– Z_RFC_BCT_PRINT, see page 117
– Z_RFC_BCT_SPOOLER, see page 118

13.6 _connect2SAP Viewer

13.6.1 Overview
The program lists the print jobs sent by the SAP system. Print jobs can be cancelled and
deleted here. The program is a client application and does not function without server.

13.6.2 Starting the program
Call up _connect2SAP Viewer via the start menu.

The start window of the program appears.

13.6.3 Structure of the program

Illustration 32: User interface _connect2SAP Viewer

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 115

13

In addition to typical Windows elements, the user interface contains a table with the print
jobs in progress.

13.6.4 Menu bar and toolbar functions

"File" menu

"Create testjob..." Create print job manually and display it in _connect2SAP Viewer.
Enter the following print job data in the "Create testjob" window.
– Device
– Number of labels to be printed
– Print job header
– Data line

"Refresh" Update print job list. The function is also available as button with the
same name.

"Minimize" Minimize program. The program appears as symbol in the right part
of the task bar and can be restored or terminated via the context
menu. The function is also available as button with the same name.

"Exit" Close program.

"Language" menu
Select here a language for the user interface.

Additional functions

<Delete> Cancel and delete currently selected print job.

Show application information, see page 14.

_connect2SAP Operating instructions _connect.BRAIN

116 38.026.297.002 en

13

13.7 Functional components

13.7.1 Overview of functions

Illustration 33: Overview of SAP functions

13.7.2 Z_RFC_BCT
FUNCTION Z_RFC_BCT.
*"--
""Local interface:

*" IMPORTING
*" VALUE(P_IN_BCT_HEADER) TYPE CHAR1024

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 117

13

*" VALUE(P_IN_BCT_DATA) TYPE CHAR1024
*" VALUE(P_IN_BCT_LEN_DATA) LIKE BAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_STATUS) LIKE BAPIRET2-MESSAGE
*" EXPORTING
*" VALUE(P_RET_SYSTEM)LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_CODE) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_TEXT) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_HEADER) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_DATA) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_LEN_DATA) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_STATUS) LIKE BAPIRET2-MESSAGE
*" EXCEPTIONS
*" COMMUNICATION_FAILURE
*" SYSTEM_FAILURE
*"--
ENDFUNCTION.

13.7.3 Z_RFC_BCT_MULTI
FUNCTION Z_RFC_BCT_MULTI.
*"--
""Local interface:

*" IMPORTING
*" VALUE(P_IN_BCT_HEADER) TYPECHAR1024
*" VALUE(P_IN_BCT_DATA) TYPECHAR1024
*" VALUE(P_IN_BCT_LEN_DATA) LIKEBAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_STATUS) LIKEBAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_DEVICE) LIKEBAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_COUNT) LIKEBAPIRET2-MESSAGE
*" EXPORTING
*" VALUE(P_RET_SYSTEM) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_CODE) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_TEXT) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_HEADER) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_DATA) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_LEN_DATA) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_STATUS) LIKEBAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_DEVICE) LIKEBAPIRET2-MESSAGE
*" EXCEPTIONS
*" COMMUNICATION_FAILURE
*" SYSTEM_FAILURE
*"--
ENDFUNCTION.

13.7.4 Z_RFC_BCT_PRINT
FUNCTION Z_RFC_BCT_PRINT.
*"--
""Local interface:

*" IMPORTING
*" VALUE(P_IN_BCT_HEADER) TYPE CHAR1024
*" VALUE(P_IN_BCT_DATA) TYPE CHAR1024
*" VALUE(P_IN_BCT_LEN_DATA) LIKE BAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_STATUS) LIKE BAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_DEVICE) LIKE BAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_COUNT) LIKE BAPIRET2-MESSAGE

_connect2SAP Operating instructions _connect.BRAIN

118 38.026.297.002 en

13

*" EXPORTING
*" VALUE(P_RET_SYSTEM) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_CODE) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_TEXT) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_HEADER) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_DATA) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_LEN_DATA) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_STATUS) LIKE BAPIRET2-MESSAGE
*" VALUE(P_RET_BCT_DEVICE) LIKE BAPIRET2-MESSAGE
*" EXCEPTIONS
*" COMMUNICATION_FAILURE
*" SYSTEM_FAILURE
*"--
ENDFUNCTION.

13.7.5 Z_RFC_BCT_SPOOLER
FUNCTION Z_RFC_BCT_SPOOLER.
*"--
""Local interface:

*" IMPORTING
*" VALUE(P_IN_BCT_DEVICE) LIKEBAPIRET2-MESSAGE
*" VALUE(P_IN_BCT_STATUS) LIKEBAPIRET2-MESSAGE
*" EXCEPTIONS
*" COMMUNICATION_FAILURE
*" SYSTEM_FAILURE
*"--
*status 1 = Start spooler.

*status 2 = Stop spooler.

*status 3 = Delete all active orders.

ENDFUNCTION.

13.7.6 Z_BCT_LABEL_GLP

The layout WE_Chargenlabel.lay must be present on the GLP.

*
* Label printing report on Bizerba GLP printer via RFC-FB.

*
report z_bct_label_glp message-id z0 line-size 255.
*
* Tables:

*
tables:
 mseg,
 makt.
*
* Number of labels

*
parameters:

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 119

13

 p_anz type i default 1.
 *
* Communication structure for FB Z_RFC_BCT:

*
data:
 p_in_bct_header like bapiret2-message,
 p_in_bct_data like bapiret2-message,
 p_in_bct_len_data like bapiret2-message,
 p_in_bct_status like bapiret2-message,
 p_in_bct_device like bapiret2-message,
 p_ret_system like bapiret2-message,
 p_ret_code like bapiret2-message,
 p_ret_text like bapiret2-message,
 p_ret_bct_header like bapiret2-message,
 p_ret_bct_data like bapiret2-message,
 p_ret_bct_len_data like bapiret2-message,
 p_ret_bct_status like bapiret2-message,
 p_ret_bct_device like bapiret2-message.
 *
* Help fields:

 *
data:
 zerf_menge(13) type c,
 fl type i.
*--

* GxNet Parameter-Name Parameters

*--

* GT01
*

GGT_ATX1
(PLU memory 1: part designation)

Character data

* GT02
*

GGT_ATX2
(PLU memory 2: measuring unit)

Character data

* GT21
*

GT_CAB1
(material number)

Barcode with structure rule

* GT22
*

GGT_CAB2
(quantity)

Barcode with structure rule

* GT23
*

GT_CAB3
(batch data)

Barcode with structure rule

* GW09
*

GGW_AUSZEICH_ART
(Labeling mode)

2 (fixed weight)

* LV01
*

LGV_SEQUENZ
(Device configuration)

-

* LX02
*

LGX_CLOSE
(logical end of command)

-

* PV01
*

PSV_PCK
(package synchronous labeling data)

-

_connect2SAP Operating instructions _connect.BRAIN

120 38.026.297.002 en

13

* PW00
*

PSW_ETIKETTYP
(Specification of label data)

0 (Normal label)

* PW02
*

PSW_PACKHDL
(package handle: cons. number)

0-100

*
* Fill data:

 mseg-matnr = '000000071432080001'.
 mseg-charg = '1234567890'.
 mseg-erfmg = '1542.380'.
 mseg-meins = 'ST'.
 makt-maktx = 'Testlabel'.
write mseg-erfmg to zerf_menge no-sign no-grouping.
if zerf_menge+9(4) = ',000'.
 clear zerf_menge+9(4).
endif.
shift zerf_menge left deleting leading space.
translate zerf_menge using ',.'.
 fl = strlen(zerf_menge).
do p_anz times.
*
* send barcodes:

*
 p_in_bct_header = '!LV01|GT21|GT22|GT23|LX02'.
 concatenate
 '0001{300502000200000070}0002{'mseg-matnr '}|'
 '0001{300502000200000070}0002{'zerf_menge(fl) '}|'
 '0001{300502000200000070}0002{'mseg-charg '}'
 into p_in_bct_data.
 perform call_rfc_bct.
*
* Send text data:

*
 p_in_bct_header ='!PV01|PW00|PW02|GW09|GT01|GT02|LX02'.
 concatenate
 '0|1|2|' makt-maktx '|' mseg-meins
 into p_in_bct_data.
 perform call_rfc_bct.
enddo.
* ===
* Call RFC functional component Z_RFC_BCT_MULTI:

* Starts destination DEST_Z_RFC_BCT.

* The PC program is linked with this destination.

* ===
form call_rfc_bct.
*
* Determine field length:

*
 p_in_bct_len_data = strlen(p_in_bct_data).
 p_in_bct_status = '0'.
 p_in_bct_device = 'GLP1'.

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 121

13

*
* Call RFC functional component:

*
 call function 'Z_RFC_BCT_MULTI' destination'DEST_Z_RFC_BCT'
 exporting
 p_in_bct_header = p_in_bct_header
 p_in_bct_data = p_in_bct_data
 p_in_bct_len_data =p_in_bct_len_data
 p_in_bct_status = p_in_bct_status
 p_in_bct_device = p_in_bct_deviceimporting
 p_ret_system = p_ret_system
 p_ret_code = p_ret_code
 p_ret_text = p_ret_text
 p_ret_bct_header =p_ret_bct_header
 p_ret_bct_data = p_ret_bct_data
 p_ret_bct_len_data =p_ret_bct_len_data
 p_ret_bct_status =p_ret_bct_status
 p_ret_bct_device =p_ret_bct_device
 exceptions
 communication_failure = 1
 system_failure = 2
 others = 3.
skip.
write: /'p_in_bct_header ', p_in_bct_header(200),
 /'p_in_bct_data ',p_in_bct_data(200),
 /'p_in_bct_len_data ',p_in_bct_len_data(200),
 /'p_in_bct_status ',p_in_bct_status(200),
 /'p_in_bct_device ',p_in_bct_device(200).
write: /'p_ret_system ', p_ret_system(200),
 /'p_ret_code ', p_ret_code(200),
 /'p_ret_text ', p_ret_text(200),
 /'p_ret_bct_header ',p_ret_bct_header(200),
 /'p_ret_bct_data ',p_ret_bct_data(200),
 /'p_ret_bct_len_data ',p_ret_bct_len_data(200),
 /'p_ret_bct_status ',p_ret_bct_status(200),
 /'p_ret_bct_device ',p_ret_bct_device(200),
 /'sy-subrc ', sy-subrc.
*
* Initialize input fields for next call:

*
 clear p_in_bct_header.
 clear p_in_bct_data.
 clear p_in_bct_len_data.
 clear p_in_bct_status.
endform.

13.7.7 Z_BCT_DIMENSION
FUNCTION Z_BCT_DIMENSION.
*"--
"" Local interface:

*"IMPORTING
*" REFERENCE(P_IN_BCT_DIM) TYPE STRING
*"EXPORTING
*" REFERENCE(P_OUT_SAP_DIMENSION) TYPESTRING

_connect2SAP Operating instructions _connect.BRAIN

122 38.026.297.002 en

13

*" REFERENCE(P_OUT_SAP_VALUE) TYPE STRING
*"--
DATA :

ilen TYPE i,
dimensiontab TYPE TABLE OF string,
szeinheit TYPE string,
szstellen TYPE string,
szvalue TYPE string,
szvorkomma TYPE string,
sznachkomma TYPE string,
nhelp TYPE i.

* Split up data from ;-3;123 kg

 SPLIT p_in_bct_dim AT ';' INTO TABLEdimensiontab.
 READ TABLE dimensiontab INDEX 1 INTOszeinheit.
 READ TABLE dimensiontab INDEX 2 INTOszstellen.
 READ TABLE dimensiontab INDEX 3 INTO szvalue.
* Check whether decimal places are present:

 IF szstellen < 0.
* Check whether filling is required at front

 ilen = strlen(szvalue).
 nhelp = abs(szstellen) + 1.
 WHILE ilen < nhelp .
 ilen = ilen + 1.
 CONCATENATE '0' szvalue INTOszvalue .
 ENDWHILE.
* Insert point:

 ilen = strlen(szvalue).
 ilen = szstellen + ilen.
 szvorkomma = szvalue+0(ilen).
 sznachkomma = szvalue.
 SHIFT sznachkomma BY ilen PLACES.
 CONCATENATE szvorkomma '.' INTO szvalue.
 CONCATENATE szvalue sznachkomma INTOszvalue .
 ELSE.
* Fill with zeros at back:

 WHILE szstellen > 0.
 szstellen = szstellen - 1.
 CONCATENATE szvalue '0' INTOszvalue .
 ENDWHILE.
 ENDIF.
* CONCATENATE szValue szEinheit into szValue SEPARATED BY SPACE.
* write: / 'Dimension ' , szValue.
 p_out_sap_value = szvalue.
 p_out_sap_dimension = szeinheit.
ENDFUNCTION.

13.7.8 Z_BCT_REG
The function divides a logon data record received by _connect.BRAIN in SAP fields.

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 123

13

Example:
Recording data set:
 I?LV01|RX04|LX02 Postenregistrierung addierend
Received data:
I!GV01|GW01|GT08|GT0A|GT11|GL0E|GL0C|GT0E|GL0A|GL15|GD07|GD01|GD02|LX02-1|
Scale_49|11000000|100000000+0|02122002|1618|19596352|101|101|kg;-3;75|kg;-3;75|
kg;-3;0
Data to SAP:

P_RET_SYSTEM System number
P_RET_CODE Error code
P_RET_TEXT Error text
P_RET_DATE Date
P_RET_TIME Time
P_RET_SCALENR Scale number
P_RET_TAREWEIGHT Tare weight
P_RET_GROSSWEIGHT Gross weight
P_RET_CONTINUOUSNR Verification number
 FUNCTION Z_BCT_REG.
""Local interface:

*"--
 *" EXPORTING
*" REFERENCE(P_RET_SYSTEM) TYPE STRING
*" REFERENCE(P_RET_CODE) TYPE STRING
*" REFERENCE(P_RET_TEXT) TYPE STRING
*" REFERENCE(P_RET_DATE) TYPE D
*" REFERENCE(P_RET_SCALENR) TYPE STRING
*" REFERENCE(P_RET_TAREWEIGHT) TYPE STRING
*" REFERENCE(P_RET_GROSSWEIGHT) TYPESTRING
*" REFERENCE(P_RET_CONTINUUSNR) TYPESTRING
*" REFERENCE(P_RET_TIME) TYPE T
*" REFERENCE(P_RET_DIMENSION) TYPE STRING
*" EXCEPTIONS
*" COMMUNICATION_FAILURE
*" SYSTEM_FAILURE
*"--

_connect2SAP Operating instructions _connect.BRAIN

124 38.026.297.002 en

13

DATA:
text TYPE string,
datatab TYPE TABLE OF string,
headertab TYPE TABLE OF string,
ni TYPE i,
szheader(220) TYPE c,
szheader(220) TYPE c,
szanswerheader(220) TYPE c,
szanswerdata(220) TYPE c,
ctyp TYPE char1,
szdimensions TYPE string,
szretsystem(220) TYPE c,
szretcode(220) TYPE c,
szrettext(220) TYPE c,
szlendata(220) TYPE c,
szstatus(220) TYPE c,
szvalue TYPE string.

 szheader = 'I?LV01|RX04|LX02'.
szdata = ''.
szvalue = strlen(szdata).
CALL FUNCTION 'Z_RFC_BCT' DESTINATION 'DEST_Z_RFC_BCT'
 EXPORTING
 p_in_bct_header = szheader
 p_in_bct_data = szdata
 p_in_bct_status = '0'
 p_in_bct_len_data = szvalue
 IMPORTING
 p_ret_system = szretsystem
 p_ret_code = szretcode
 p_ret_text = szrettext
 p_ret_bct_header = szanswerheader
 p_ret_bct_len_data = szlendata
 p_ret_bct_status = szstatus
 p_ret_bct_data = szanswerdata
 EXCEPTIONS
 communication_failure = 1
 system_failure = 2
 OTHERS = 3.
CASE syst-subrc.
 WHEN 0.
 WRITE : 'header', szanswerheader.
 WRITE : 'data', szanswerdata.
 WRITE : 'szRetSystem', szretsystem.
 WRITE : 'szStatus', szstatus.
 WRITE : 'szLenData', szlendata.
 WRITE : 'szRetText', szrettext.
 WRITE : 'szRetCode', szretcode.
 CONDENSE szretcode.
 IF szretcode = '0'.
 WRITE : 'ok'.

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 125

13

* Customer program

* Separate header I! or I?

 SHIFT szheader BY 2 PLACES.
* Data in table:

 SPLIT szanswerheader AT '|' INTO TABLEheadertab.
 SPLIT szanswerdata AT '|' INTO TABLEdatatab.
* Evaluate data:

 ni = 1.
 LOOP AT headertab INTO text.
 CASE text.
 WHEN 'GL15'.
 READ TABLEdatatab INDEX ni INTO P_RET_CONTINUUSNR.
 WHEN 'GT08'.
 READ TABLEdatatab INDEX ni INTO P_RET_SCALENR.
 WHEN 'GL0E'.
* Date must be indicated like this: year day month:

 READ TABLEdatatab INDEX ni INTO szvalue.
 CONCATENATEszvalue+4(4) szvalue+0(4) INTO szvalue.
 P_RET_DATE= szvalue.
 WHEN 'GL0C'.
 READ TABLEdatatab INDEX ni INTO P_RET_TIME.
 WHEN 'GD02'.
 READ TABLEdatatab INDEX ni INTO szvalue.
 CALLFUNCTION 'Z_BCT_DIMENSION'
 EXPORTING
 p_in_bct_dim= szvalue
 IMPORTING
 p_out_sap_value= szvalue
 p_out_sap_dimension= szdimensions.
 P_RET_TAREWEIGHT= szvalue.
 WHEN 'GD07'.
 READ TABLEdatatab INDEX ni INTO szvalue.
 CALLFUNCTION 'Z_BCT_DIMENSION'
 EXPORTING
 p_in_bct_dim= szvalue
 IMPORTING
 p_out_sap_value= szvalue
 p_out_sap_dimension= szdimensions.
 P_RET_GROSSWEIGHT= szvalue.
 TRANSLATEszdimensions TO UPPER CASE.
 P_RET_DIMENSION= szdimensions.
 ENDCASE. " text
* The data type determines whether data is included or not:

 SHIFT text BY 1 PLACES.
 ctyp = text.
 CASE ctyp.
 WHEN 'L' OR 'T' OR 'W'OR 'D'.
 ni = ni +1.
 ENDCASE. "ctyp
 ENDLOOP. "headertab
 ENDIF. "szretcode = 0
* Fill return:

 P_RET_SYSTEM = szretsystem.

_connect2SAP Operating instructions _connect.BRAIN

126 38.026.297.002 en

13

 P_RET_CODE = szretcode.
 P_RET_TEXT = szrettext.
 WHEN 1 OR 2.
* 'communication_failure' or 'system_failure'
 RAISE COMMUNICATION_FAILURE.
 WHEN OTHERS.
* Other errors:

 ENDCASE. " syst-subrc'Z_RFC_BCT'
ENDFUNCTION.

13.7.9 Z_BCT_NULLSTELLEN
FUNCTION Z_BCT_NULLSTELLEN.
*"--
""Local interface:

*" EXPORTING
*" REFERENCE(SYSTEM_NR) TYPE ZFC_SYSTEM_NR
*" REFERENCE(SUBRC) TYPE ZFC_SUBRC
*" REFERENCE(SUBRC_TXT) TYPE ZFC_SUBRC_TXT
*" EXCEPTIONS
*" ERROR
*"--
DATA:

szheader(220) TYPE c,
szdata(220) TYPE c,
szanswerheader(220) TYPE c,
szanswerdata(220) TYPE c,
ctyp TYPE char1,
szdimensions TYPE string,
szretsystem(220) TYPE c,
szretcode(220) TYPE c,
szrettext(220) TYPE c,
szlendata(220) TYPE c,
szstatus(220) TYPE c,
szvalue TYPE string.

szheader = 'I!GX02'.
szdata = ''.
szvalue = strlen(szdata).
CALL FUNCTION 'Z_RFC_BCT' DESTINATION 'DEST_Z_RFC_BCT'
 EXPORTING
 p_in_bct_header = szheader
 p_in_bct_data = szdata
 p_in_bct_status = '0'
 p_in_bct_len_data = szvalue
 IMPORTING
 p_ret_system = szretsystem
 p_ret_code = szretcode
 p_ret_text = szrettext
 p_ret_bct_header = szanswerheader
 p_ret_bct_len_data = szlendata

Operating instructions _connect.BRAIN _connect2SAP

38.026.297.002 en 127

13

 p_ret_bct_status = szstatus
 p_ret_bct_data = szanswerdata
 EXCEPTIONS
 communication_failure = 1
 system_failure = 2
 OTHERS = 3.
 CASE syst-subrc.
 WHEN 0.
 system_nr = szretsystem.
 subrc = szretcode.
 subrc_txt = szrettext.
 WHEN 1 OR 2.
* 'communication_failure' or 'system_failure'
 RAISE error.
 WHEN OTHERS.
* other failure
 ENDCASE. " syst-subrc'Z_RFC_BCT'
ENDFUNCTION.

13.7.10 CFB_RFC_BCT_MULTI
FUNCTION CFB_RFC_BCT_MULTI.
*"--
""Local interface:

*" IMPORTING
*" VALUE(P_IN_BCT_HEADER) TYPE TEXT_512
*" VALUE(P_IN_BCT_DATA) TYPE STRING
*" VALUE(P_IN_BCT_LEN_DATA) TYPE TEXT_512
*" VALUE(P_IN_BCT_DEVICE) TYPE TEXT_512
*" EXPORTING
*" VALUE(P_RET_SYSTEM) TYPE TEXT_512
*" VALUE(P_RET_CODE) TYPE TEXT_512
*" VALUE(P_RET_TEXT) TYPE TEXT_512
*" VALUE(P_RET_BCT_HEADER) TYPE TEXT_512
*" VALUE(P_RET_BCT_DATA) TYPE TEXT_512
*" VALUE(P_RET_BCT_LEN_DATA) TYPE TEXT_512
*" VALUE(P_RET_BCT_STATUS) TYPE TEXT_512
*" VALUE(P_RET_BCT_DEVICE) TYPE TEXT_512
*" EXCEPTIONS
*" COMMUNICATION_FAILURE
*" SYSTEM_FAILURE
*"--
ENDFUNCTION.

_connectScannerWI Operating instructions _connect.BRAIN

128 38.026.297.002 en

14

14 _connectScannerWI

14.1 Overview
_connectScannerWI is used to connect an external barcode scanner to any program that
processes text and numeric information. For this, the scanner is connected to the PC
where the processing program runs via a serial interface. A service running in the back-
ground records the data and sends it to the active program for processing.

_connectScannerWI transfers the scanned data in form of simulated keyboard inputs. The
data supplied by the scanner is therefore processed as if the barcode had been input us-
ing a keyboard. To control processing, the barcode sequence can be completed by means
of additional keyboard commands (e.g. forwarding to a new input field or to the next input
dialog).

14.2 Prerequisites
The following prerequisites apply when connecting a barcode scanner:

– The barcode scanner can be connected to a PC serial interface. It can transmit suc-
cessfully read barcodes in form of numbers and separators to a PC.

– The barcode scanner is set by default. That means, it only transmits correctly read
barcode data using CR+LF (carriage return and line feed) as separators. It does not
transmit any incorrect or unidentified barcode data, nor does it transmit meta informa-
tion via barcode type, etc.

– The PC has a free serial interface, to which the barcode scanner can be connected.

14.3 Installation
Select _connectScannerWI as component to be installed when installing _connect.BRAIN.
If _connect.BRAIN has been installed without _connectScannerWI, proceed as follows:

Open Windows system control.
Select "Deinstall program".
Select "Change" in the context menu for _connect.BRAIN.
Select "Change program" in the installation program.
<Forward >>
Activate the "_connectScannerWI" check-box.
<Forward >>
Follow the instructions on the screen to complete installation.

During installation, _connectScannerWI registers in the Windows autor-
un path so that it is automatically started with each user login.

Registry path: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Cur-
rentVersion\Run

Operating instructions _connect.BRAIN _connectScannerWI

38.026.297.002 en 129

14

14.4 Configuration
Configure _connect2File using the _connectConfig program.

Create device with the following settings, see page 46.

Device settings for the barcode scanner in _connectConfig

"Devicetype" "FX Other devices" / "Scanner"

"Connection-type" "Serial"

"Interface" Set to the interface the scanner is connected with. Configure the
interface according to the scanner parameters (see manual or
scanner configuration program). The following parameters are
common:
– "Baudrate": 9600
– "Databits": 8
– "Parity": "none"
– "Stopbits": 1
– "Protocol": "no handshake"

"Dialog" "_Standard serial IX"

"Logging/size" Normal operation does not require reporting. Logging of all data
is advisable for faultfinding.

"Header-Format" "Gx/Ix-Net(A!, I!, A?, I?)"

"_connect2SAP" Save default settings.

"Connection" Do not activate the "Hold Connection" check-box.

"Status" Activate the "Device active" check-box.

Adapt settings to the operation of _connectScannerWI, see page 36.

14.5 Starting the program
_connectScannerWI is automatically started with each user login. The started program ap-
pears as icon in the right part of the task bar. After closing the program, it can be restarted
manually via the start menu.

14.6 Program structure
After starting the program, _connectScannerWI appears only as icon in the right part of the
task bar. The user interface consists of a context menu and a status window. Open the
status window using the "Display window" function of the context menu. The program ac-
tivities and the time are displayed.

_connectScannerWI Operating instructions _connect.BRAIN

130 38.026.297.002 en

14

14.7 Functions in the context menu
The following functions are available via the context menu of the program symbol:

"Display window" Show status window.

"Hide Window" Hide status window.

"Start Scanner" Start accessing barcode scanner.

"Stop Scanner" Stop access to barcode scanner. This is necessary for changing a
_connect.BRAIN configuration.

"Close" Close _connectScannerWI.

Operating instructions _connect.BRAIN VirtualES - View

38.026.297.002 en 131

15

15 VirtualES - View

15.1 Overview
The VirtualES program is a verifiable memory for weighing. The data are protected by
check sums and are protected against manipulation.

The VirtualES software component consists of two programs:
Admin to configure the verifiable memory.
View to read the verifiable memory content.

In order to be able to operate devices with a verifiable memory, access to VirtualES must
be activated in the device configuration. Activation is done in _connectConfig in the BCS
configuration of the devices. The "Use Virtual ES" option must be activated here. The Ad-
min administration tool can also be called from here.

15.2 VirtualES - Admin
The VirtualES administration tool serves to configure the verifiable memory. It can be used
to define the properties that will be stored in the verifiable memory for each weighing, for
each configured device.

15.2.1 Starting program
Call up VirtualES - Admin via the Start menu.
The start window of the program appears.

VirtualES - View Operating instructions _connect.BRAIN

132 38.026.297.002 en

15

15.2.2 Structure of the program

Illustration 35: User interface VirtualES - Admin
1 Menu bar

2 Tool bar

3 Navigation area

4 Display area

The user interface contains the following areas, in addition to typical Windows elements:

Navigation area The databases and devices configured until now are displayed
here. When you select a database, the set parameters appear
in the display area.

Display area The parameter settings of the database or the device selected
in the navigation area are displayed here.

Information is distributed to two tabs in the display area:
Dataset This displays the assignments relating to which parameters are

saved within the data records and which can be additionally se-
lected. Compulsory parameters cannot be deselected and are
always a constituent of a data record.

Size The number of data records is specified here.

Operating instructions _connect.BRAIN VirtualES - View

38.026.297.002 en 133

15

15.2.3 Menu bar and toolbar functions

Functions in menu "File"

"New" Create new configuration.

"Save" Save current configuration.

"Exit" Close VirtualES - Admin.

Functions in menu "Extras"

"Language" Allows the language to be changed in the user guidance.

"Change name of DB" Allows to rename an existing database.

Functions in menu "?"

"Information about Vir-
tualES-Admin"

Displays the program version and installation environment.

"Signatures" Displays the digital signatures of the configuration program
and the background server application.
This allows you to check whether changes have been made
to VirtualES or parts of it.

15.2.4 Defining new configuration
"file" / "New"

or
Click the corresponding icon of the toolbar.
Select a device and go to the next selection window using "Forward >".
Only one device can be selected.

Select further parameters that are to be transferred to the protected memory.
Compulsory data (gross, net/tare, data record number, etc.) cannot be deselected.

VirtualES - View Operating instructions _connect.BRAIN

134 38.026.297.002 en

15

15.3 VirtualES - View
The VirtualES - View display program serves for visualization of the saved data. Data re-
cords:
– Data record number
– Date
– Time
– Scale number
– Tare weight
– Gross weight
– Consecutive number

15.3.1 Start program
Call up VirtualES - View via the Start menu.

The start window of the program appears.

15.3.2 Program structure

Illustration 36: VirtualES view user interface
1 Menu bar

2 Tool bar

3 Navigation area

4 Display area

The user interface contains the following areas, in addition to typical Windows elements:

Navigation area The configured databases and devices are displayed here.
When you select a device, the saved data appears in the dis-
play area.

Display area The parameters of the database selected in the navigation area
are displayed here. The data is displayed in a tabular structure.
If a filter is set, only the filtered data records appear. Otherwise
all saved data appears. All or part of the data in the display area
can be selected, e.g. for printing.

Operating instructions _connect.BRAIN VirtualES - View

38.026.297.002 en 135

15

15.3.3 Menu bar and toolbar functions

Functions in the "File" menu

"Refresh" Updates the current display by reading out the verifiable
memory again.

"Save as" Saves all data of the selected devices in an XML file. For
this purpose a file dialog is called up, in which you can de-
fine the name and location of the file to be written.

"print" Prints the selected area or the entire document.

"sideview" Displays a preview of the selected area or the entire docu-
ment. A printout can then be made from this preview.

"Printer settings..." Allows the configuration of a printer for the print function.

"Close" Close VirtualES - View.

Functions in the "Filter" menu

"Activate Filter..." Opens a dialog window, in which up to 4 filter options can
be set: The filter can be configured by selecting a parame-
ter from the verifiable memory, an operator (less than, less
than/equal to, equal to, etc.), a reference value and a link to
the other filter options.

"Remove Filter" This allows a set filter to be deactivated again, so that all
data is displayed again.

Functions in the "Extras" menu

"Language" Allows the language to be changed in the user guidance.

Functions in the "?" menu

"Information about Vir-
tualES-View"

Displays the program version and installation environment.

"Show signatures" Displays the digital signatures of the configuration program
and the background server application.
This allows you to check whether changes have been made
to VirtualES or parts of it.

VirtualES - View Operating instructions _connect.BRAIN

136 38.026.297.002 en

15

15.3.4 Display data records
The data records of the verifiable memory can be viewed, searched and printed out.

Click on the selected scale.

The data records are displayed.

15.3.5 Check signatures
The signatures must match the data in test certificate no. D09-02.22.

VirtualES - View is opened.

Show signatures
"?" / "Show signatures"
Read signatures and compare with test certificate.

Close window
"OK"

The BCS server identification number is only displayed if the connection
with the Bizerba Communication Server (BCS) is activated and registra-
tion <RX04> has already taken place.

15.3.6 Registration of weighing results
VirtualES saves the weighing results of the individual verified scales in a verifiable memo-
ry. The verifiable module and the saved data are protected by check sums and cannot be
changed unnoticed.

Select scale with right mouse button.
"VirtualES function test"
A pop-up window is opened.

"Registration"
The weighing results of the scale are registered and saved in VirtualES.

"Close"
The pop-up window is closed.

The saved data is displayed highlighted in the display area.

Operating instructions _connect.BRAIN _edit.BRAIN

38.026.297.002 en 137

16

16 _edit.BRAIN

16.1 Overview
_edit.BRAIN is a program for viewing log files (*.log or *.commlog) created by other _con-
nect.BRAIN applications.

16.2 Starting the program
Call up _edit.BRAIN via the start menu.

The start window of the program appears.

16.3 Program structure

Illustration 37: User interface _edit.BRAIN
1 Menu bar

2 Tool bar

3 Display and editing area

4 Bx-Net View

_edit.BRAIN Operating instructions _connect.BRAIN

138 38.026.297.002 en

16

16.4 Menu bar and toolbar functions

Functions in the "File" menu

"New" Create a new text file.

"Open" Open an existing *.log, *.commlog or text file.

"Save" Save an existing *.log, *.commlog or text file.

"Save as..." Save an open *.log, *.commlog or text file with a freely se-
lectable name.

"Save all" Save all open *.log, *.commlog or text files.

"Close" Close an open *.log, *.commlog or text file.

"Close all" Close all open *.log, *.commlog or text files.

"Print" Print an open *.log, *.commlog or text file.

"Send as E-Mail" Send an open *.log, *.commlog or text file as e-mail.

"Last opened files" Open last open file again.

"Exit" Close _edit.BRAIN.

Operating instructions _connect.BRAIN _edit.BRAIN

38.026.297.002 en 139

16

Functions in the "Edit" menu

"Undo" Undo last action.

"Redo" Repeat last action.

"Cut" Cut selected section.

"Copy" Copy selected data to clipboard.

"Paste" Paste data from clipboard.

"Delete" Delete marked section.

"Select all" Select all.

"Find" Find data.

"Replace" Replace data.

"Find next" Continue search with same settings.

"Refresh" Reload data.

"More" Open further editing tools:

"Set comment"
Set comment symbol.

"Delete comment "
Delete comment symbol.

"Set bookmark"
Set read symbol.

"Previous bookmark "
Go to previous read symbol.

"Next bookmark"
Go to next read symbol.

"Delete bookmark "
Delete read symbol.

_edit.BRAIN Operating instructions _connect.BRAIN

140 38.026.297.002 en

16

Functions in the "View" menu

"Output" Opens a display area for the data to be output at the bottom
of the main window.

"Clipboard" Opens the clipboard.

"BxNet View" Opens the "BxNetView" display area at the bottom of the
main window.

"Toolbars" Show or hide toolbars:
– View
– Edit
– File

Functions in the "Language" menu
"Deutsch" Sets the program language to German.
"English" Sets the program language to English.

Functions in the "Windows" menu
"Windows..." It is used to change between the open *.log, *.commlog or text

files.

Functions in the "Extras" menu
"Synchronisation..." Commlogs or logs can be synchronized between themselves or

with event logs. To do so, the time stamps are compared and
chronologically arranged in a temporary file.

Functions in the "Tools" menu
"Notepad" Opens the Windows notepad.

"BCT" Log files of other Bizerba applications can be opened or de-
leted.

Functions in the "Help" menu
"Info about..." A window with the current program information appears.

Operating instructions _connect.BRAIN _edit.BRAIN

38.026.297.002 en 141

16

16.5 Functions in the context menu
After opening the *.commlog files, the following features are available.

"Detail" It is used to display details. The single BxNet commands of a
telegram are broken down and displayed in the BxNetView win-
dow. _edit.Brain picks up the information from the Gx database
in the application folder under the BxNet folder.

"Find" It is used to find special terms (full text search). The results are
displayed in the output window.

"Hexcode" The selected line is displayed as hexadecimal value.
"Copy to Notepad" Copy to notepad: Telegrams can be copied to the notepad for

further processing in other programs or a better overview. The
selected lines or the complete telegram with mixed or separated
header/data can be copied.

"Invisible Row(s)" Selected lines will be hidden to get a better overview of the
document.

"Visible Row(s)" Hidden lines will be displayed again.
"Fonts" It is used to set font types.

After opening the *.log files, the following features are available.

"Detail" It is used to display details. The single BxNet commands of a
telegram are broken down and displayed in the BxNetView win-
dow. _edit.Brain picks up the information from the Gx database
in the application folder under the BxNet folder.

"Copy to Notepad" Copy to notepad: Telegrams can be copied to the notepad for
further processing in other programs or a better overview. The
selected lines or the complete telegram with mixed or separated
header/data can be copied.

"Invisible Row(s)" Selected lines will be hidden to get a better overview of the
document.

"Visible Row(s)" Hidden lines will be displayed again.
"Decrypt line" This menu point contains raw hex data as saved in the file. Only

one telegram is displayed at a time.
"Syntax validation" It is used to verify the syntax of the entire IX command.

To avoid error messages, all commands from the first to the last com-
mand of an IX string have to be selected.

"Fonts" It is used to set font types.

LogPathConfig Operating instructions _connect.BRAIN

142 38.026.297.002 en

17

17 LogPathConfig

17.1 Overview
LogPathConfig is used to modify the log file standard directory or to delete entries. Then
all components write the related log files in the specified directory.

17.2 Program structure

Illustration 38: LogPathConfig user interface

In addition to typical Windows elements, the user interface contains a display area with the
paths to the program registry entry and to the log file storage location.

17.3 Menu bar and toolbar functions

"Return to default
log path"

Settings are reset to predefined path.

"Set custom log-
path"

A window containing the Window directory tree for selecting the
storage location appears.

"Delete logfiles ..." Log files can be deleted using a filter criteria.

"Open Folder" The specified storage folder is opened.

17.4 Deleting log files
To delete selected log files, proceed as follows:

Call up filter mask via Delete log files

Operating instructions _connect.BRAIN LogPathConfig

38.026.297.002 en 143

17

Illustration 39: Deleting filter mask log files

Select date.
Enter extension.
The extension (zip, log, commlog, etc.)
can be displayed as list, separated by
semicolon.
The "Use recycle bin" checkbox allows to
specify whether the Windows trash shall
be used when deleting files.

Confirm input with <OK>.
Answer the following security query with
<Yes> or <No>.

Background information Operating instructions _connect.BRAIN

144 38.026.297.002 en

18

18 Background information

18.1 Device families
The Bizerba syntax distinguishes between the following device families:

CX: Checkweigher (CWE, CWM, ...)
GX: Labeler (GLM-I, GLM-E, GLP, ...)
IX: Industrial devices (WM, CWL Eco, ST, ...)
LW: Retail scales (SC, SW, ...)
SX: Software (PSS, WinCis Count, ...)
FX: Other devices (scanner, terminal, ...)
MX: Inspection systems (BVS - Bizerba Vision System, …)

The CX family is based on the GX family. The CX device settings corre-
spond to those of the GX devices and are not managed separately in
_connectBRAIN. Thus, the CX device are found in _connectBRAIN un-
der the GX device family.

18.2 BxNet language
BxNet is the generic term used for the interface languages GxNet and IxNet that alllow da-
ta exchange with Bizerba devices. BxNet is unique within the language group and there-
fore version-independent. The language scope is upgraded with each new function in the
devices. BxNet depends on the physical interface used and on the conversion type.

A data record in BxNet consists of one or more subfunction identifiers with the relevant da-
ta. The languages belonging to BxNet have the same structure, but distinguish themselves
by the subfunction identifiers related to the respective device group.

GxNet
GxNet language is used in labelers for both communication between the internal device
components and for communication with other devices in the system group. Via EDP con-
nection, communication with each individual device is possible.

IxNet
IxNet language is adapted to the requirements of industrial devices. Industrial devices do
not use IxNet language internally, but solely as an interface language. _connect.BRAIN
converts IxNet commands in ASCII commands for industrial devices that do not know the
IxNet language.

Operating instructions _connect.BRAIN Background information

38.026.297.002 en 145

18

18.2.1 Telegram structure
Commands and data are transmitted to a device as ASCII text in BxNet telegram format.
There are two different formats available in _connectServer and/or _connectControl:

– Header and data separated (e.g. Send() method)
– Header and data together (e.g. SendOne() method)

Header (commands): A header can be composed of one or more commands. In case
of more commands, these are separated by separators ("|").

Data (user data): The user data includes the data associated with the data de-
scription. They are also separated by separators ("|").

Header structure
Language area 1 character (A or I)
Command type 1 character (! or?)
BxNet command 1..n BxNet command

18.2.2 Coding of the data description
Data description is coded for read or write access. To achieve backward compatibility with
the GxTools, there is an old and a new header format for data description. Assign the
header format to be used to a device in _connectConfig, see page 46.

current: Gx/Ix-Net(A!, I!, A?, I?), for labelers and industrial devices
The 1st character of the header stands for the device, the 2nd character for the type of
access:

A! Write access for labelers
A? Read access for labelers
I! Write access for industrial devices
I? Read access for industrial devices

old: Gx-Net (!,?), only for labelers (GxTools format)
The 1st character of the header defines the type of access:

! Write access
? Read access

18.2.3 BxNet data types
The BxNet language supports the following command file types:

Identification Description Number of parameters

X Command without data 0 (no data element available)

W Word, 16 bit with sign 1

L Long, 32 bit with sign 1

Background information Operating instructions _connect.BRAIN

146 38.026.297.002 en

18

Identification Description Number of parameters

D Dimensional value 1 (3 subparameters)

V Variable 0 (variable sequences are always terminates
with the LX02 command.)

T Text 1

18.2.4 Coding of the useful data
The user data are displayed in readable form:

– Numeric data in decimal notation
– Texts as ASCII character string

Exceptions:
– The first 32 characters of the ASCII character table (hexadecimal numeration <=

1FHEX) are control characters. They are represented in hexadecimal form. For identifi-
cation, they are preceded by the escape character @.
Example: LF becomes @0A.

– The same is valid for the 127th character of the ASCII character table (hexadecimal
numeration >= 7FHEX). These characters are treated as control characters. They are
also represented in hexadecimal form and preceded by the escape character @.

– The characters "@" and "|" are treated as control characters because they can occur
within a text and be used as escape characters or separators.
Example:
max.mustermann@firma.de becomes max.mustermann@40firma.de

18.2.5 Dimensionful data:
Dimensionful data consists of a unit, the number of decimal places and a related integer.
These three values are separated by semicolon ";".

Design

Parameters Description

1 Unit

2 Number of decimal places

3 Integer

18.2.6 Coding of prices
Coding of prices varies according to the set header format.

Operating instructions _connect.BRAIN Background information

38.026.297.002 en 147

18

current: Gx/Ix-Net(A!, I!, A?, I?), for labelers and industrial devices
A price consists of the abbreviation for the local currency, the country-specific number of
decimal places and the value of the price. The value is always coded as an integer. To
determine the price, the value is multiplied by a power of ten of the decimal places.

Example:

Price Coding

19,90 € EUR;-2;1990

12,99 € USD;-2;1299

old: Gx-Net (!,?), only for labelers (GxTools format)
A price consists of the country code and the price value. The value is always coded as an
integer. The country code contains the currency and the country-specific number of deci-
mal places. To determine the price, the value is multiplied by a power of ten of the decimal
places.

Example:

Price Coding

19,90 € 6|1990

12,99 $ 64|1299

Country codes used:

– 6: EUR, 2 decimal places
– 64: USD, 2 decimal places

18.2.7 Coding of weights
A weight value consists of 3 parts:

– Weight unit (KG, LB, lb, OZ, %)
– Exponent for the decimal places (0, -1, -2, -3, -4)
– Weight value as integer

current: Gx/Ix-Net(A!, I!, A?, I?), for labelers and industrial devices
Example:

Weight Coding

2,995 kg KG;-3;2995

45,93 kg KG;-2;4593

Background information Operating instructions _connect.BRAIN

148 38.026.297.002 en

18

old: Gx-Net (!,?), only for labelers (GxTools format)
Example:

Weight Coding

2.995 kg KG|-3|2995

45.93 kg KG|-2|4593

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 149

19

19 Program interfaces

19.1 _connectServer DCOM communication interface
The _connectServer DCOM communication interface provides functions for communica-
tion among _connectServer and client. The properties, methods and events are described
below.

19.1.1 Methods

Close
It closes the connection to the connected device. If the Open method has not been carried
out, Close reports an error.

Syntax and parameter

C++
HRESULT Close ()
C#
int Close ()

no parameters

CreateReceiveQueue
It generates a reception queue. Then one or more filters can be created for the reception
queue using the SetReceiveFilterQueue method. Data can only be received after at least
one filter has been created for the reception queue.

Syntax and parameter

C++
HRESULT CreateReceiveQueue ([out] BSTR *szQueueName)
C#
int CreateReceiveQueue (out String szQueueName)

Parameters Value Description
szQueueName Character string Queue name generated by _con-

nectServer

Program interfaces Operating instructions _connect.BRAIN

150 38.026.297.002 en

19

DeleteReceiveQueue
It deletes a reception queue. If there is not any reception queue with the indicated name in
the system, an error is triggered.

Syntax and parameter

C++
HRESULT DeleteReceiveQueue ([in] BSTR szQueueName)
C#
int DeleteReceiveQueue (string szQueueName)

Parameters Value Description
szQueueName Character string. Name of the queue to be deleted.

Error
It provides the error number, the system number and the error text.

Syntax and parameter

C++
HRESULT Error ([out] long *lErrNr, [out] long *lSystemNr, [out] BSTR *szErrTxt)
C#
void Error (out int lErrNr, out int lSystemNr, out string szErrTxt)

Parameters value Description
lErrNr Numeric data Error number

lSystemNr Numeric data Number of the system that has
triggered the error.

szErrTxt Character string Error text in the set language

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 151

19

ErrorHeaderData
It provides the error number, the system number, the error text and the related data.

Syntax and parameter

C++
HRESULT ErrorHeaderData ([out] long *lErrNr, [out] long *lSystemNr, [out] BSTR
*szErrTxt, [out] BSTR *szErrHeader, [out] BSTR *szErrData)
C#
void ErrorHeaderData (out int lErrNr, out int lSystemNr, out string szErrTxt,
out string szErrHeader, out string szErrData)

Parameters value Description
lErrNr Numeric data Error number

lSystemNr Numeric data Number of the system that has
triggered the error.

szErrTxt Character string Error text in the set language

szErrHeader Character string Header of the error data record.
This value is only indicated when
the device (e.g. GLP) transmits an
error data record.

szErrData Character string Data portion of the error data re-
cord. This value is only indicated
when the device (e.g. GLP) trans-
mits an error data record.

GetBCSVersion
It provides the version name of _connectServer (BCS).

Syntax and parameter

C++
HRESULT GetBCSVersion ([out] BSTR *szVersion)
C#
int GetBCSVersion (out string szVersion)

Parameters Value Description
szVersion Character string _connectServer version name

Program interfaces Operating instructions _connect.BRAIN

152 38.026.297.002 en

19

GetCategory
It provides the number of the device family the open system is related to.

Syntax and parameter

C++
HRESULT GetCategory ([out] short *nCategory)
C#
int GetCategory (out short nCategory)

Parameters Value Description
nCategory 1: basic systems

2: labeler / printer
3: retail scales
4: industrial devices
5: external devices
6: WinCWS
7: industry special

Device family number

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 153

19

Open
It opens access to a device via _connectServer.

Syntax and parameter

C++
HRESULT Open ([in] BSTR szIdentUser, [in] BSTR szDeviceName, [in] short nTele-
gramType, [in] short nAccess, [in] short bLightLicenceEnable)
C#
int Open (string szIdentUser, string szDeviceName, short nTelegramType, short
nAccess, short bLightLicenceEnable)

Parameters Value Description
szIdentUser Any character string User name for allocation of errors

that occur.

szDeviceName Name of an active
device (character
string)

Name of the system to be opened.
This name is defined in _connect-
Config. All active systems can be
queried via the information inter-
face.

nTelegramType 0: normal
1: spontaneous tele-
grams

Specifies whether the device shall
transmit spontaneous telegrams to
the client. Spontaneous telegrams
can only be sent to a client. Tele-
gram duplication is not supported.
If a client is opened for spontane-
ous telegrams, the attempt to
open more clients for spontaneous
telegrams causes an error mes-
sage. However, the interface can
be opened normally.

nAccess 0: multiple access
1: single access

Device access type. In the event
of single access, only one client
communicates with the device, in
the event of multiple access, more
clients communicate with the de-
vice.

bLightLicenceEnable 0: full version
1: light version
(Bizerba software)

Licensing mechanism

Receive
It provides reception data (header and user data) and the transmission status. It requires
the handle from the Send method.

Program interfaces Operating instructions _connect.BRAIN

154 38.026.297.002 en

19

If the Open method has not been carried out, Receive reports an error.

Syntax and parameter

C++
HRESULT Receive ([out] BSTR *szHeader, [out] BSTR *szData, [in] BSTR szHandle,
[in] long lTimeout, [out] long *lStatus)
C#
int Receive (out string szHeader, out string szData, string szHandle, int lTi-
meout, out int lStatus)

Parameters Value Description
szHeader Character string Header data (data description)

szData Character string User data

szHandle Character string Handle that is returned from the
Send method.

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

ReceiveAuthorizationRequest
It provides a license code which is used by the client to generate a response. The client
inserts the calculated license code in the SendAuthorizationResponse method. This meth-
od is only used by the Bizerba software. If the Open method has not been carried out, Re-
ceiveAuthorizationRequest reports an error.

Syntax and parameter

C++
HRESULT ReceiveAuthorizationRequest ([out] BSTR *szLizenzKey)
C#
int ReceiveAuthorizationRequest (ref string szLizenzKey)

Parameters Value Description
szLizenzKey Character string License code generated by _con-

nectServer

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 155

19

ReceiveOne
It provides reception data (header and user data combined) and the transmission status. It
requires the handle from the Send method.

If the Open method has not been carried out, ReceiveOne reports an error.

Syntax and parameter

C++
HRESULT ReceiveOne ([out] BSTR *szHeaderData, [in] BSTR szHandle, [in] long
lTimeout, [out] long *lStatus)
C#
int ReceiveOne (out string szHeaderData, string szHandle, int lTimeout, out
int lStatus)

Parameters Value Description
szHeaderData Character string Combination of header and user

data

szHandle Character string Handle that is returned from the
Send method.

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The transmission
order remains in the transmission
list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Program interfaces Operating instructions _connect.BRAIN

156 38.026.297.002 en

19

ReceiveOneWithoutAck
It receives spontaneous telegrams without direct acknowledgement. When using this
method, the customer application can delay the transmission of the acknowledgement and
transmit data (e.g. lock) to the labeler prior to transmitting the acknowledgement. The ac-
knowledgement is separately transmitted using the SendAcknowledge method.

The ReceiveOneWithoutAck method can only be used for spontaneous
data. The customer application has to acknowledge the data record with
SendAcknowledge so that a GLP proceeds after a lock.

Syntax and parameter

C++
HRESULT ReceiveOneWithoutAck ([out] BSTR *szHeaderData, [in] BSTR szHandle,
[in] long lTimeout, [out] long *lStatus)
C#
int ReceiveOneWithoutAck (out string szHeaderData, string szHandle, int lTime-
out, out int lStatus)

Parameters Value Description
szHeaderData Character string Header data (data description)

szHandle Character string Handle for spontaneous data
(DUSTBIN or created queue).
Spontaneous data deriving from
the device without related user
queue is automatically allocated to
a DUSTBIN queue. They can be
picked up using the DUSTBIN
handle.

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The transmission
order remains in the transmission
list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 157

19

ReceiveWithoutAck
It receives spontaneous telegrams without direct acknowledgement. When using this
method, the customer application can delay the transmission of the acknowledgement and
transmit data (e.g. lock) to the labeler prior to transmitting the acknowledgement. The ac-
knowledgement is separately transmitted using the SendAcknowledge method.

The ReceiveWithoutAck method can only be used for spontaneous da-
ta. The customer application has to acknowledge the data record with
SendAcknowledge so that a GLP proceeds after a lock.

Syntax and parameter

C++
HRESULT ReceiveWithoutAck ([out] BSTR *szHeader, [out] BSTR *szData, [in] BSTR
szHandle, [in] long lTimeout, [out] long *lStatus)
C#
int ReceiveWithoutAck (out string szHeader, out string szData, string szHan-
dle, int lTimeout, out int lStatus)

Parameters Value Description
szHeader Character string Header data (data description)

szData Character string User data

szHandle Character string Handle for spontaneous data
(DUSTBIN or created queue).

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The transmission
order remains in the transmission
list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Reset
It cancels the current send request. If a send request is not cancelled, it remains active
until transmission is completed. Thus, it is impossible to start a new send request.

Program interfaces Operating instructions _connect.BRAIN

158 38.026.297.002 en

19

Use Reset to cancel the send request from the _connectServer transmission list. If the da-
ta record has already been sent to the device before Reset and the device continues re-
sponding after Reset, the response is identified as spontaneous data record and made
available because the corresponding send request no longer exists.

Syntax and parameter

C++
HRESULT Reset ([in] BSTR szHandle)
C#
int Reset (string szHandle)

Parameters Value Description
szHandle Character string Handle that is returned from the

Send method.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 159

19

Send
It sends data to the connected evaluation unit. If the Open method has not been carried out,
Send reports an error.

Syntax and parameter

C++
HRESULT Send ([in] BSTR szHeader, [in] BSTR szData, [out] BSTR *szHandle, [in]
long lTimeout, [out] long *lStatus)
C#
int Send (string szHeader, string szData, out string szHandle, int lTimeout,
out int lStatus)

Parameters Value Description
szHeader Character string Header data (data description)

szData Character string User data

szHandle Character string Handle generated by _connect-
Server. It has to be specified in the
Receive method to provide the cli-
ent with the relevant data.

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Program interfaces Operating instructions _connect.BRAIN

160 38.026.297.002 en

19

SendAcknowledge
It closes the ReceiveWithoutAck method with a positive acknowledgement.

Syntax and parameter

C++
HRESULT SendAcknowledge ([in] BSTR szHandle)
C#
int SendAcknowledge (string szHandle)

Parameters Value Description
szHandle Character string Handle used in the ReceiveWi-

thoutAck method.

SendAcknowledgeNeg
It closes the ReceiveWithoutAck method with a negative acknowledgement. Transmits an
error message to the device.

Syntax and parameter

C++
HRESULT SendAcknowledgeNeg ([in] BSTR szHandle, [in] long lError, [in] BSTR
szErrTxt)
C#
int SendAcknowledgeNeg (string szHandle, int lError, string szErrTxt)

Parameters Value Description
szHandle Character string Handle used in the ReceiveWi-

thoutAck method.

lError Numeric data Error number to be sent to the de-
vice

szErrTxt Character string Error text to be sent to the device

SendAuthorizationResponse
It compares the license code calculated by the client with the license code transmitted by
_connectServer via ReceiveAuthorizationRequest. This method is only used by the
Bizerba software.

In case of noncompliance, an error is reported.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 161

19

If the Open method has not been carried out, SendAuthorizationReponse reports an error.

Syntax and parameter

C++
HRESULT SendAuthorizationResponse ([in] BSTR szLizenzKey)
C#
int SendAuthorizationResponse (string szLizenzKey)

Parameters Value Description
szLizenzKey Character string License code calculated by the cli-

ent

SendCheck
It verifies whether data is available, the command has been completely processed or
transmitted, and a positive or negative acknowledgement has been received.

Syntax and parameter

C++
HRESULT SendCheck ([in] BSTR szHandle, [in] long lTimeout, [out] long *lStatus)
C#
int SendCheck (string szHandle, int lTimeout, out int lStatus)

Parameters Value Description
szHandle Character string Handle that is returned from the

Send method.

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Program interfaces Operating instructions _connect.BRAIN

162 38.026.297.002 en

19

SendOne
It sends data to the connected evaluation unit. If the Open method has not been carried out,
Send reports an error.

Syntax and parameter

C++
HRESULT SendOne ([in] BSTR szHeader Data, [out] BSTR *szHandle, [in] long lTi-
meout, [out] long *lStatus)
C#
int SendOne (string szHeader Data, out string szHandle, int lTimeout, out int
lStatus)

Parameters Value Description
szHandle Character string Handle generated by _connect-

Server. It has to be specified in the
Receive method to provide the cli-
ent with the relevant data.

lTimeout Numeric data Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

SetReceiveQueueFilter
It sets a filter for reception data. The filter is required to receive data by means of custom-
er-specific reception queues that have been created using the CreateReceiveQueue meth-
od. Without filters, spontaneous data is automatically assigned to the DUSTBIN reception
queue.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 163

19

Example for a GX: Use CreateReceiveQueue to create an individual queue for package
data records starting with PV05. To allocate the package data records to a method, call up
the SetReceiveQueueFilter method using the queue name and the PV05 filter parameter. If
data records, e.g. starting with PV05 or PV06, are to be allocated to the same queue, call
up the SetReceiveQueueFilter method two times. Specify the same queue both times and
use the PV05 filter parameter at one time and the PV06 filter parameter the other time.

Syntax and parameter

C++
HRESULT SetReceiveQueueFilter ([in] BSTR szQueueName, [in] BSTR szFilter)
C#
int SetReceiveQueueFilter (string szQueueName, string szFilter)

Parameters Value Description
szQueueName Character string Queue name generated by _con-

nectServer The CreateReceive-
Queue method returns this name.

szFilter Character string Filter parameter, e.g. PV05 for a
GX.

IsUnicodeDevice

Syntax and parameter

C++
HRESULT IsUnicodeDevice([out] short* bIsUnicodeDevice)
C#
int IsUnicodeDevice(ref short bIsUnicodeDevice))

Parameter Value Description
bIsUnicodeDevice 0: Configured de-

vice is not a Uni-
code device
1: Configured de-
vice is a Unicode
device

Indicates if configured device is a
code page based device or a Uni-
code device.

Program interfaces Operating instructions _connect.BRAIN

164 38.026.297.002 en

19

19.1.2 Events

DataArrival
It indicates reception of spontaneous telegrams and transmits the identification of the com-
munication channel (handle) which can be used for receiving data via the Receive, Recei-
veWithoutAck, ReceiveOneWithoutAck or ReceiveOne method.

Syntax and parameter

C++
long DataArrival(BSTR szQueueName)
C#
int DataArrival(string szQueueName)

Parameters Value Description
szQueueName Character string Identification of communication

channel (handle) This handle has
to be transferred in the reception
method (e.g. Receive) in order to
access data.

RemoteDataArrival
It answers a send request with a ?, A? or I? header. Transmits the identification of the
communication channel (handle) which can be used for receiving data via the Receive or
ReceiveOne method.

The ReceiveWithoutAck and ReceiveOneWithoutAck methods are only to
be used for receiving spontaneous data and must not be used in con-
nection with the RemoteDataArrival event.

Syntax and parameter

C++
long RemoteDataArrival(BSTR szQueueName)
C#
int RemoteDataArrival(string szQueueName)

Parameters Value Description
szQueueName Character string Identification of communication

channel (handle) This handle has
to be transferred in the Receive or
ReceiveOne method in order to ac-
cess data.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 165

19

19.2 _connectServer DCOM information interface
The _connectServer DCOM information interface supplies all information on _con-
nect.BRAIN and on the devices that have been created and activated in _connectConfig.
The available methods are described in the following paragraphs.

19.2.1 Methods

Error
It reports an error message after failure of a previous action. Even if the Open method has
not been carried out, Error reports an error.

Syntax and parameter

C++
HRESULT Error ([out] long *lErrNr, [out] long *lSystemNr, [out] BSTR *szErrTxt)
C#
void Error (out int lErrNr, out int lSystemNr, out string szErrTxt)

Parameter Value Description
lErrNr Number Error number

szErrTxt Character string Error text in the set language

GetBCSVersion
It provides the version name of _connectServer (BCS). If the Open method has not been
carried out, GetBCSVersion reports an error.

Syntax and parameter

C++
HRESULT GetBCSVersion ([out] BSTR *szVersion)
C#
int GetBCSVersion (out string szVersion)

Parameters Value Description
szVersion Character string _connectServer version name

Program interfaces Operating instructions _connect.BRAIN

166 38.026.297.002 en

19

GetDemo
It verifies whether _connect.BRAIN is used with license or in the developer mode.

Syntax and parameter

C++
HRESULT GetDemo ([out] BOOL *bDemo)
C#
int GetDemo (out int bDemo)

Parameters Value Description
bDemo 0: false, normal op-

eration with licenses
1: true, developer
mode

Normal operation or developer
mode

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 167

19

GetDevice
It returns all active systems defined in the configuration. If the Open method has not been
carried out, GetDevice reports an error.

Syntax and parameter

C++
HRESULT GetDevice ([out] BSTR *szDeviceString, [out] long *lCount)
C#
int GetDevice (out string szDeviceString, out int lCount)

Parameter Value Description
szDeviceString SECT01 = section

name
PARA02 = two rela-
ted values follow
name = device name
devCategory = see
table 1
devType = see table
2
devicestate = see
table 3

Example:

szDeviceString=SECT01|SYSTEM1|
PARA02|name|bizerbaScale1|
PARA02|devCategory|2|PARA02|
devType|19|PARA02|devicestate|
0|
puts out:
SYSTEM1
bizerbaScale1
2
19

lCount Number Number of active systems

Table 1: Possible values for devCategory

1: basic systems
2: labeler / printer
3: retail scales
4: industrial devices
5: external devices
7: industry special

Program interfaces Operating instructions _connect.BRAIN

168 38.026.297.002 en

19

Table 2: Possible values for devType

0: not defined
1: GD
2: GH
3: GV
4: GS
5: Scanner
6: Terminal
7: ST
8: ITU
9: ITC1
10: ITC2
11: EL
12: BT
14: ITE

15: ITS
16: ITL
17: MCI
18: MCE
19: GLP
20: Empty
21: HW
22: PSS
26: NTScale
30: Addidata I/O card
34: WM
35: GLM-I
36: CWM
37: CWE

38: ITCS
39: CWL Eco
40: GLF
41: GLM-E
42: GLM-B
43: GLM-P
44: GLM-L
45: GLM-E Retail
46: Bizerba Vision System
(BVS)
47: CWP Neptune
48: CWD
49: Addidata IO MSX E1516
Board
50: iS50

Table 3: Possible values for devicestate

0: active
1: inactive

GetDeviceDCOM
It returns the devices connected to a remote PC.

Syntax and parameter

C++
HRESULT GetDeviceDCOM ([out] BSTR *szDevice, [out] long *lCount, BSTR szDComPC)
C#
int GetDeviceDCOM (out string szDevice, out int lCount, string szDComPC)

Parameters Value Description
szDeviceString see GetDevice

lCount see GetDevice

szDComPC Character string Remote PC name

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 169

19

GetLicenseCountForSpecificLicense
This method is used to determine the number of available licenses of the specified license
type.

Syntax and parameter

C++
HRESULT GetLicenseCountForSpecificLicense([in] long licenseType, [out] long
*licenseCount)
C#
int GetLicenseCountForSpecificLicense(int licenseType, out int licenseCount)

Parameters Value Description
licenseType License type:

1: BCS_LICENSE_TYPE_DEVICE_CX

2: BCS_LICENSE_TYPE_DEVICE_GX

3: BCS_LICENSE_TYPE_DEVICE_IX

4: BCS_LICENSE_TYPE_DEVICE_BRAIN

5: BCS_LICENSE_TYPE_VS

6: BCS_LICENSE_TYPE_INTERFACE_2FILE

7: BCS_LICENSE_TYPE_INTERFACE_2DB

8: BCS_LICENSE_TYPE_INTERFACE_2SAP

9: BCS_LICENSE_TYPE_DEVICE_MX

licenseCount Number Number of available licenses of
the specified license type on the li-
cense server The value 9999
means that it is a bit license and
not a counter license.

GetLicenseExpirationDateForProductVersion
This method checks the expiry date of time-limited licenses. After expiring, the license is
no longer available and the function cannot be used in _connect.BRAIN any longer.

Syntax and parameter

C++
HRESULT GetLicenseExpirationDateForProductVersion([out] DATE *date)
C#
int GetLicenseExpirationDateForProductVersion(out system.DateTime date)

Parameters Value Description
date Date Date when license expires

Program interfaces Operating instructions _connect.BRAIN

170 38.026.297.002 en

19

GetLicenseExpirationDateForSpecificLicense
This method checks the expiry date of time-limited licenses. After expiring, the license is
no longer available and the function cannot be used in _connect.BRAIN any longer.

Syntax and parameter

C++
HRESULT GetLicenseExpirationDateForSpecificLicense([in] long licenseType,
[out] DATE *date)
C#
int GetLicenseExpirationDateForSpecificLicense(int licenseType, out system.Da-
teTime date)

Parameters Value Description
licenseType License type:

1: BCS_LICENSE_TYPE_DEVICE_CX

2: BCS_LICENSE_TYPE_DEVICE_GX

3: BCS_LICENSE_TYPE_DEVICE_IX

4: BCS_LICENSE_TYPE_DEVICE_BRAIN

5: BCS_LICENSE_TYPE_VS

6: BCS_LICENSE_TYPE_INTERFACE_2FILE

7: BCS_LICENSE_TYPE_INTERFACE_2DB

8: BCS_LICENSE_TYPE_INTERFACE_2SAP

9: BCS_LICENSE_TYPE_DEVICE_MX

date Date Date when license expires

GetLicenseInformations
This method finds out information about the licensing system currently used, e.g. version
number and license server name. The information is generated as xml structure.

Syntax and parameter

C++
HRESULT GetLicenseInformations([out] BSTR *xmlLicensingInformations)
C#
int GetLicenseInformations(out string xmlLicensingInformations)

Parameters Value Description
xmlLicensingInformations Character string XML data

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 171

19

GetLicenseNameForProductVersion
This method returns the license required by the installed _connect.BRAIN. The result can
be used to verify whether the required license is available on the license server. If the li-
cense is missing, _connect.BRAIN cannot be used any longer.

Syntax and parameter

C++
HRESULT GetLicenseNameForProductVersion([out] BSTR *licenseProductVersion)
C#
int GetLicenseNameForProductVersion(out string licenseProductVersion)

Parameters Value Description
licenseProductVersion Character string Name of the required license, e.g.

IS_connect_V30. The product
cannot be executed without this li-
cense.

GetLicenseSystemName
The method identifies the licensing system currently used (up to now BSP only).

Syntax and parameter

C++
HRESULT GetLicenseSystemName([out] BSTR *licensingSystemName)
C#
int GetLicenseSystemName(out string licensingSystemName)

Parameters Value Description
licensingSystemName Character string Name of the current licensing sys-

tem, BSP character string at the
moment

Program interfaces Operating instructions _connect.BRAIN

172 38.026.297.002 en

19

GetSerialNumber
It returns the _connectServer serial number. If the Open method has not been carried out,
GetSerial Number reports an error.

Syntax and parameter

C++
HRESULT GetSerialNumber ([out] BSTR *szSerialNumber)
C#
int GetSerialNumber (out string zSerialNumber)

Parameters Value Description
szSerialNumber Character string _connectServerserial number

Open
To allow access to the functions of the _connect.BRAIN DCOM interface, the interface has
to be opened using the Open method. A user name is specified to facilitate trouble shoot-
ing.

Syntax and parameter

C++
HRESULT Open ([in] BSTR szIdentUser)
C#
int Open (string szIdentUser)

Parameters Value Description
szIdentUser Any character string User name for allocation of errors

that occur.

19.3 _connectControl DCOM communication interface
The _connectControl DCOM communication interface uses the ActiveX control element
BCC.OCX to exchange data among client and _connectServer. The properties, methods
and events are described below.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 173

19

19.3.1 Properties

Version
It supplies the BCC.OCX version ID code.

Syntax

C++
BSTR Version
C#
string Version

19.3.2 Methods

AboutBox
It shows the copyright and _connectServer information.

Syntax and parameter

C++
void AboutBox()
C#
void AboutBox()

no parameters

Close
It closes the connection to the connected device. If the Open method has not been carried
out, Close reports an error.

Syntax and parameter

C++
long Close ()
C#
int Close ()

no parameters

Program interfaces Operating instructions _connect.BRAIN

174 38.026.297.002 en

19

CreateReceiveQueue
It generates a reception queue. Then one or more filters can be created for the reception
queue using the SetReceiveFilterQueue method. Data can only be received after at least
one filter has been created for the reception queue.

Syntax and parameter

C++
long CreateReceiveQueue (BSTR *szQueueName)
C#
int CreateReceiveQueue (ref string szQueueName)

Parameters Value Description
szQueueName Character string Queue name generated by _con-

nectServer

DeleteReceiveQueue
It deletes a reception queue. If there is not any reception queue with the indicated name in
the system, an error is triggered.

Syntax and parameter

C++
long DeleteReceiveQueue (BSTR szQueueName)
C#
int DeleteReceiveQueue (string szQueueName)

Parameters Value Description
szQueueName Character string Name of the queue to be deleted.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 175

19

Error
It provides the error number, the system number and the error text.

Syntax and parameter

C++
void Error (long *nErrNr, long *nSystemNr, BSTR *szErrTxt)
C#
void Error (ref int nErrNr, ref int nSystemNr, ref string szErrTxt)

Parameters Value Description
nErrNr Number Error number

nSystemNr Number Number of the system that has
triggered the error.

szErrTxt Character string Error text in the set language

ErrorHeaderData
It provides the error number, the system number, the error text and the related data.

Syntax and parameter

C++
long ErrorHeaderData (long *lErrNr, long *lSystemNr, BSTR *szErrTxt, BSTR
*szErrHeader, BSTR *szErrData)
C#
void ErrorHeaderData (ref int lErrNr, ref int lSystemNr, ref string szErrTxt,
ref string szErrHeader, ref string szErrData)

Parameters Value Description
IErrNr Number Error number

ISystemNr Number Number of the system that has
triggered the error.

szErrTxt Character string Error text in the set language

szErrHeader Character string Header of the error data record.
This value is only indicated when
the device (e.g. GLP) transmits an
error data record.

szErrData Character string Data portion of the error data re-
cord. This value is only indicated
when the device (e.g. GLP) trans-
mits an error data record.

Program interfaces Operating instructions _connect.BRAIN

176 38.026.297.002 en

19

GetBCSVersion
It provides the version name of _connectServer (BCS).

Syntax and parameter

C++
long GetBCSVersion (BSTR *szVersion)
C#
int GetBCSVersion (ref string szVersion)

Parameters Value Description
szVersion Character string _connectServer version name

GetCategory
It provides the number of the device family the open system is related to.

Syntax and parameter

C++
long GetCategory (short *nCategory)
C#
int GetCategory (ref short nCategory)

Parameters Value Description
nCategory 1: basic systems

2: labeler / printer
3: retail scales
4: industrial devices
5: external devices
6: WinCWS
7: industry special

Device family number

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 177

19

GetDemo
It verifies whether _connect.BRAIN is used with license or in the developer mode.

Syntax and parameter

C++
long GetDemo (short *nDemo)
C#
int GetDemo (ref short nDemo)

Parameters Value Description
nDemo 0: false, normal op-

eration with licenses
1: true, developer
mode

User name for allocation of errors
that occur
Normal operation or developer
mode

Program interfaces Operating instructions _connect.BRAIN

178 38.026.297.002 en

19

GetDevice
It returns all active systems defined in the configuration. If the Open method has not been
carried out, GetDevice reports an error.

Syntax and parameter

C++
long GetDevice (BSTR *szDeviceString, long *lCount)
C#
int GetDevice (ref string szDeviceString, ref int lCount)

Parameter Value Description
szDeviceString SECT01 = section

name
PARA02 = two rela-
ted values follow
name = device name
devCategory = see
table 1
devType = see table
2
devicestate = see
table 3

Example:

szDeviceString=SECT01|SYSTEM1|
PARA02|name|bizerbaScale1|
PARA02|devCategory|2|PARA02|
devType|19|PARA02|devicestate|
0|
puts out:
SYSTEM1
bizerbaScale1
2
19

lCount Number Number of active systems

Table 1: Possible values for devCategory

1: basic systems
2: labeler / printer
3: retail scales
4: industrial devices
5: external devices
7: industry special

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 179

19

Table 2: Possible values for devType

0: not defined
1: GD
2: GH
3: GV
4: GS
5: Scanner
6: Terminal
7: ST
8: ITU
9: ITC1
10: ITC2
11: EL
12: BT
14: ITE

15: ITS
16: ITL
17: MCI
18: MCE
19: GLP
20: Empty
21: HW
22: PSS
26: NTScale
30: Addidata I/O card
34: WM
35: GLM-I
36: CWM
37: CWE

38: ITCS
39: CWL Eco
40: GLF
41: GLM-E
42: GLM-B
43: GLM-P
44: GLM-L
45: GLM-E Retail
46: Bizerba Vision System
(BVS)
47: CWP Neptune
48: CWD
49: Addidata IO MSX E1516
Board
50: iS50

Table 3: Possible values for devicestate

0: active
1: inactive

GetDeviceDCOM
It returns the devices connected to a remote PC.

Syntax and parameter

C++
long GetDeviceDCOM (BSTR *szDevice, long *lCount, BSTR szDComPC)
C#
int GetDeviceDCOM (ref string szDevice, ref int lCount, string szDComPC)

Parameters Value Description
szDeviceString see GetDevice

lCount see GetDevice

szDComPC Character string Remote PC name

Program interfaces Operating instructions _connect.BRAIN

180 38.026.297.002 en

19

GetLicenseCountForSpecificLicense
This method is used to determine the number of available licenses of the specified license
type.

Syntax and parameter

C++
long GetLicenseCountForSpecificLicense(long licenseType, long *licenseCount)
C#
int GetLicenseCountForSpecificLicense(int licenseType, ref int licenseCount)

Parameters Value Description
licenseType License type:

1: BCS_LICENSE_TYPE_DEVICE_CX

2: BCS_LICENSE_TYPE_DEVICE_GX

3: BCS_LICENSE_TYPE_DEVICE_IX

4: BCS_LICENSE_TYPE_DEVICE_BRAIN

5: BCS_LICENSE_TYPE_VS

6: BCS_LICENSE_TYPE_INTERFACE_2FILE

7: BCS_LICENSE_TYPE_INTERFACE_2DB

8: BCS_LICENSE_TYPE_INTERFACE_2SAP

9: BCS_LICENSE_TYPE_DEVICE_MX

licenseCount Number Number of available licenses of
the specified license type on the li-
cense server The value 9999
means that it is a bit license and
not a counter license.

GetLicenseExpirationDateForProductVersion
This method checks the expiry date of time-limited licenses. After expiring, the license is
no longer available and the function cannot be used in _connect.BRAIN any longer.

Syntax and parameter

C++
long GetLicenseExpirationDateForProductVersion(DATE *date)
C#
int GetLicenseExpirationDateForProductVersion(ref system.DateTime date)

Parameters Value Description
date Date Date when license expires

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 181

19

GetLicenseExpirationDateForSpecificLicense
This method checks the expiry date of time-limited licenses. After expiring, the license is
no longer available and the function cannot be used in _connect.BRAIN any longer.

Syntax and parameter

C++
long GetLicenseExpirationDateForSpecificLicense(long licenseType, DATE *date)
C#
int GetLicenseExpirationDateForSpecificLicense(int licenseType, ref system.Da-
teTime date)

Parameters Value Description
licenseType License type:

1: BCS_LICENSE_TYPE_DEVICE_CX

2: BCS_LICENSE_TYPE_DEVICE_GX

3: BCS_LICENSE_TYPE_DEVICE_IX

4: BCS_LICENSE_TYPE_DEVICE_BRAIN

5: BCS_LICENSE_TYPE_VS

6: BCS_LICENSE_TYPE_INTERFACE_2FILE

7: BCS_LICENSE_TYPE_INTERFACE_2DB

8: BCS_LICENSE_TYPE_INTERFACE_2SAP

9: BCS_LICENSE_TYPE_DEVICE_MX

date Date Date when license expires

GetLicenseInformations
This method finds out information about the licensing system currently used, e.g. version
number and license server name. The information is generated as xml structure.

Syntax and parameter

C++
long GetLicenseInformations(BSTR *xmlLicensingInformations)
C#
int GetLicenseInformations(ref string xmlLicensingInformations)

Parameters Value Description
xmlLicensingInformations Character string XML data

Program interfaces Operating instructions _connect.BRAIN

182 38.026.297.002 en

19

GetLicenseNameForProductVersion
This method returns the license required by the installed _connect.BRAIN. The result can
be used to verify whether the required license is available on the license server. If the li-
cense is missing, _connect.BRAIN cannot be used any longer.

Syntax and parameter

C++
long GetLicenseNameForProductVersion(BSTR *licenseProductVersion)
C#
int GetLicenseNameForProductVersion(ref string licenseProductVersion)

Parameters Value Description
licenseProductVersion Character string Name of the required license, e.g.

IS_connect_V30. The product
cannot be executed without this li-
cense.

GetLicenseSystemName
The method identifies the licensing system currently used (up to now BSP only).

Syntax and parameter

C++
long GetLicenseSystemName(BSTR *licensingSystemName)
C#
int GetLicenseSystemName(ref string licensingSystemName)

Parameters Value Description
licensingSystemName Character string Name of the current licensing sys-

tem, BSP character string at the
moment

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 183

19

GetSerialNumber
It returns the _connectServer serial number. If the Open method has not been carried out,
GetSerial Number reports an error.

Syntax and parameter

C++
long GetSerialNumber (BSTR *szSerialNumber)
C#
int GetSerialNumber (ref string zSerialNumber)

Parameters Value Description
szSerialNumber Character string _connectServerserial number

Program interfaces Operating instructions _connect.BRAIN

184 38.026.297.002 en

19

Open
It opens access to a device via _connectServer.

Syntax and parameter

C++
long Open (BSTR szIdentUser, BSTR szDeviceName, short nTelegramType, short nAc-
cess, short bLightLicenceEnable)
C#
int Open (string szIdentUser, string szDeviceName, short nTelegramType, short
nAccess, short bLightLicenceEnable)

Parameters Value Description
szIdentUser Any character string User name for allocation of errors

that occur.

szDeviceName Name of an active
device (character
string)

Name of the system to be opened.
This name is defined in _connect-
Config. All active systems can be
queried via the information inter-
face.

nTelegramType 0: normal
1: spontaneous tele-
grams

Specifies whether the device shall
transmit spontaneous telegrams to
the client. Spontaneous telegrams
can only be sent to a client. Tele-
gram duplication is not supported.
If a client is opened for spontane-
ous telegrams, the attempt to
open more clients for spontaneous
telegrams causes an error mes-
sage. However, the interface can
be opened normally.

nAccess 0: multiple access
1: single access

Device access type. In the event
of single access, only one client
communicates with the device, in
the event of multiple access, more
clients communicate with the de-
vice.

bLightLicenceEnable 0: full version
1: light version
(Bizerba software)

Licensing mechanism

Receive
It provides reception data (header and user data) and the transmission status. It requires
the handle from the Send method.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 185

19

If the Open method has not been carried out, Receive reports an error.

Syntax and parameter

C++
long Receive (BSTR *szHeader, BSTR *szData, BSTR szHandle, long lTimeout, long
*lStatus)
C#
int Receive (ref string szHeader, ref string szData, string szHandle, int lTi-
meout, ref int lStatus)

Parameters Value Description
szHeader Character string Header data (data description)

szData Character string User data

szHandle Character string Handle that is returned from the
Send method.

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

ReceiveAuthorizationRequest
It provides a license code which is used by the client to generate a response. The client
inserts the calculated license code in the SendAuthorizationResponse method. This meth-
od is only used by the Bizerba software. If the Open method has not been carried out, Re-
ceiveAuthorizationRequest reports an error.

Syntax and parameter

C++
long ReceiveAuthorizationRequest (BSTR *szLizenzKey)
C#
int ReceiveAuthorizationRequest (ref string szLizenzKey)

Parameters Value Description
szLizenzKey Character string License code generated by _con-

nectServer

Program interfaces Operating instructions _connect.BRAIN

186 38.026.297.002 en

19

ReceiveOne
It provides reception data (header and user data combined) and the transmission status. It
requires the handle from the Send method.

If the Open method has not been carried out, ReceiveOne reports an error.

Syntax and parameter

C++
long ReceiveOne (BSTR *szHeaderData, BSTR szHandle, long lTimeout, long *lSta-
tus)
C#
int ReceiveOne (ref string szHeaderData, string szHandle, int lTimeout, ref
int lStatus)

Parameters Value Description
szHeaderData Character string Combination of header and user

data

szHandle Character string Handle that is returned from the
Send method.

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 187

19

ReceiveOneWithoutAck
It receives spontaneous telegrams without direct acknowledgement. When using this
method, the customer application can delay the transmission of the acknowledgement and
transmit data (e.g. lock) to the labeler prior to transmitting the acknowledgement. The ac-
knowledgement is separately transmitted using the SendAcknowledge method.

The ReceiveOneWithoutAck method can only be used for spontaneous
data. The customer application has to acknowledge the data record with
SendAcknowledge so that a GLP proceeds after a lock.

Syntax and parameter

C++
long ReceiveOneWithoutAck (BSTR *szHeaderData, BSTR szHandle, long lTimeout,
long *lStatus)
C#
int ReceiveOneWithoutAck (ref string szHeaderData, string szHandle, int lTime-
out, ref int lStatus)

Parameters Value Description
szHeaderData Character string Header data (data description)

szHandle Character string Handle for spontaneous data
(DUSTBIN or created queue).
Spontaneous data deriving from
the device without related user
queue is automatically allocated to
a DUSTBIN queue. They can be
picked up using the DUSTBIN
handle.

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Program interfaces Operating instructions _connect.BRAIN

188 38.026.297.002 en

19

ReceiveWithoutAck
It receives spontaneous telegrams without direct acknowledgement. When using this
method, the customer application can delay the transmission of the acknowledgement and
transmit data (e.g. lock) to the labeler prior to transmitting the acknowledgement. The ac-
knowledgement is separately transmitted using the SendAcknowledge method.

The ReceiveWithoutAck method can only be used for spontaneous da-
ta. The customer application has to acknowledge the data record with
SendAcknowledge so that a GLP proceeds after a lock.

Syntax and parameter

C++
long ReceiveWithoutAck (BSTR *szHeader, BSTR *szData, BSTR szHandle, long lTi-
meout, long *lStatus)
C#
int ReceiveWithoutAck (ref string szHeader, ref string szData, string szHan-
dle, int lTimeout, ref int lStatus)

Parameters Value Description
szHeader Character string Header data (data description)

szData Character string User data

szHandle Character string Handle for spontaneous data
(DUSTBIN or created queue).

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Reset
It cancels the current send request. If a send request is not cancelled, it remains active
until transmission is completed. Thus, it is impossible to start a new send request.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 189

19

Use Reset to cancel the send request from the _connectServer transmission list. If the da-
ta record has already been sent to the device before Reset and the device continues re-
sponding after Reset, the response is identified as spontaneous data record and made
available because the corresponding send request no longer exists.

Syntax and parameter

C++
long Reset (BSTR szHandle)
C#
int Reset (string szHandle)

Parameters Value Description
szHandle Character string Handle that is returned from the

Send method.

Program interfaces Operating instructions _connect.BRAIN

190 38.026.297.002 en

19

Send
It sends data to the connected evaluation unit. If the Open method has not been carried out,
Send reports an error.

Syntax and parameter

C++
long Send (BSTR szHeader, BSTR szData, BSTR *szHandle, long lTimeout, long
*lStatus)
C#
int Send (string szHeader, string szData, ref string szHandle, int lTimeout,
ref int lStatus)

Parameters Value Description
szHeader Character string Header data (data description)

szData Character string User data

szHandle Character string Handle generated by _connect-
Server. It has to be specified in the
Receive method to provide the cli-
ent with the relevant data.

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 191

19

SendAcknowledge
It closes the ReceiveWithoutAck method with a positive acknowledgement.

Syntax and parameter

C++
long SendAcknowledge (BSTR szHandle)
C#
int SendAcknowledge (string szHandle)

Parameters Value Description
szHandle Character string Handle used in the ReceiveWi-

thoutAck method.

SendAcknowledgeNeg
It closes the ReceiveWithoutAck method with a negative acknowledgement. Transmits an
error message to the device.

Syntax and parameter

C++
long SendAcknowledgeNeg (BSTR szHandle, long lError, BSTR szErrTxt)
C#
int SendAcknowledgeNeg (string szHandle, int lError, string szErrTxt)

Parameters Value Description
szHandle Character string Handle used in the ReceiveWi-

thoutAck method.

lError Number Error number to be sent to the de-
vice

szErrTxt Character string Error text to be sent to the device

SendAuthorizationResponse
It compares the license code calculated by the client with the license code transmitted by
_connectServer via ReceiveAuthorizationRequest. This method is only used by the
Bizerba software.

In case of noncompliance, an error is reported.

Program interfaces Operating instructions _connect.BRAIN

192 38.026.297.002 en

19

If the Open method has not been carried out, SendAuthorizationReponse reports an error.

Syntax and parameter

C++
long SendAuthorizationResponse (BSTR szLizenzKey)
C#
int SendAuthorizationResponse (string szLizenzKey)

Parameters Value Description
szLizenzKey Character string License code calculated by the cli-

ent

SendCheck
It verifies whether data is available, the command has been completely processed or
transmitted, and a positive or negative acknowledgement has been received.

Syntax and parameter

C++
long SendCheck (BSTR szHandle, long lTimeout, long *lStatus)
C#
int SendCheck (string szHandle, int lTimeout, ref int lStatus)

Parameters Value Description
szHandle Character string Handle that is returned from the

Send method.

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 193

19

SendOne
It sends data to the connected evaluation unit. If the Open method has not been carried out,
Send reports an error.

Syntax and parameter

C++
long SendOne (BSTR szHeaderData, BSTR *szHandle, long lTimeout, long *lStatus)
C#
int SendOne (string szHeaderData, ref string szHandle, int lTimeout, ref int
lStatus)

Parameters Value Description
szHandle Character string Handle generated by _connect-

Server. It has to be specified in the
Receive method to provide the cli-
ent with the relevant data.

lTimeout Number Period of time during which the
method waits for an answer from
the device. After the time elapsed,
the function will be exited with sta-
tus 1 (timeout). The send request
remains in the transmission list.

lStatus 0: function OK
1: timeout
2: more data availa-
ble

Transmission status

SetReceiveQueueFilter
It sets a filter for reception data. The filter is required to receive data by means of custom-
er-specific reception queues that have been created using the CreateReceiveQueue meth-
od. Without filters, spontaneous data is automatically assigned to the DUSTBIN reception
queue.

Program interfaces Operating instructions _connect.BRAIN

194 38.026.297.002 en

19

Example for a GX: Use CreateReceiveQueue to create an individual queue for package
data records starting with PV05. To allocate the package data records to the method, call
up the SetReceiveQueueFilter method with the queue name and the PV05 filter parameter.
If data records, e.g. starting with PV05 or PV06, are to be allocated to the same queue,
call up the SetReceiveQueueFilter method two times. Specify the same queue both times
and use the PV05 filter parameter at one time and the PV06 filter parameter the other time.

Syntax and parameter

C++
long SetReceiveQueueFilter (BSTR szQueueName, BSTR szFilter)
C#
int SetReceiveQueueFilter (string szQueueName, string szFilter)

Parameters Value Description
szQueueName Character string Queue name generated by _con-

nectServer The CreateReceive-
Queue method returns this name.

szFilter Character string Filter parameter, e.g. PV05 for a
GX.

19.3.3 Events

BCCDataArrival
It indicates reception of spontaneous telegrams and transmits the identification of the com-
munication channel (handle) which can be used for receiving data via the Receive, Recei-
veWithoutAck, ReceiveOneWithoutAck or ReceiveOne method.

Syntax and parameter

C++
void BCCDataArrival(BSTR szHandle)
C++
void BCCDataArrival(string szHandle)

Parameters Value Description
szHandle Character string Identification of communication

channel (handle)

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 195

19

BCCRemoteDataArrival
It answers a send request with a ?, A? or I? header. Transmits the identification of the
communication channel (handle) which can be used for receiving data via the Receive, Re-
ceiveWithoutAck, ReceiveOneWithoutAck or ReceiveOne method.

Syntax and parameter

C++
void BCCRemoteDataArrival(BSTR szHandle)
C#
void BCCRemoteDataArrival(string szHandle)

Parameters Value Description
szHandle Character string Identification of communication

channel (handle)

BCCError
It indicates the failure of a previous action. Further details are displayed by the error code
and text.

Syntax and parameter

C++
void BCCError(long lErrCode, BSTR szErrTxt)
C#
void BCCError(int lErrCode, string szErrTxt)

Parameters Value Description
lErrCode Number Error code

szErrTxt Character string Error text

Program interfaces Operating instructions _connect.BRAIN

196 38.026.297.002 en

19

19.3.4 IsUnicodeDevice

Syntax and parameter

C++
Long IsUnicodeDevice(short* bIsUnicodeDevice)
C#
int IsUnicodeDevice(ref short bIsUnicodeDevice)

Parameter Value Description
bIsUnicodeDevice 0: Configured de-

vice is not a Uni-
code device
1: Configured de-
vice is a Unicode
device

Indicates if configured device is a
code page based device or a Uni-
code device.

19.4 BctFunctions
The BctFunctions.dll is a COM-Dll that makes available auxiliary functions for handling Bx
telegrams. It includes conversion functions for handling dimensionful values and UTF-8/
Unicode texts as well as parse functions for Bx telegrams in different formats.

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 197

19

19.4.1 Conversion function

ConvertBxNetToWeight
Conversion function that breaks down a Bx dimension value in single components.

Syntax and parameter

C++
HRESULT ConvertBxNetToWeight([in] BSTR szWeightData, [in] BSTR szWeightDelimit-
er, [out] BSTR *szWeight, [out] BSTR *szWeightUnit);
C#
int ConvertBxNetToWeight(string szWeightData, string szWeightDelimiter, out
string szWeight, out string szWeightUnit);

Parameters Description
szWeightData Dimension value in Bx format

Example: "kg;-3;1234"

szWeightDelimiter Decimal separator to be used

szWeight The weight is returned as string with the specified deci-
mal separator.

szWeightUnit It is used to return the Bx dimension value unit.

Example (C#)
string weight, weightUnit;
tools.ConvertBxNetToWeight("kg;-3;1234", ".", out weight, out weightUnit);
Console.WriteLine(weight + " " + weightUnit); // "1.234 kg"

Program interfaces Operating instructions _connect.BRAIN

198 38.026.297.002 en

19

ConvertWeightToBxNet
Conversion function that creates a Bx dimension value from weight, decimal separator and
weight unit.

Syntax and parameter

C++
HRESULT ConvertWeightToBxNet([in] BSTR szWeight, [in] BSTR szWeightDelimiter,
[in] BSTR szWeightUnit, [out] BSTR *szWeightData);
C#
int ConvertWeightToBxNet(string szWeight, string szWeightDelimiter, string
szWeightUnit, out string szWeightData);

Parameters Description
szWeight Weight as string with decimal separator

Example: "1.234 kg".

szWeightDelimiter Decimal separator used in szWeight.
Example: ","

szWeightUnit Weight unit used in szWeight.
Example: "kg"

szWeightData Dimension values are returned in Bx format.
Example: "kg;-3;1234"

Example (C#)
string weight.Data;
tools.ConvertWeightToBxNet("1.234", ".", "kg", out weightData);
Console.WriteLine(weightData); // "kg;-3;1234"

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 199

19

ConvertTextUnicodeToBxNetUTF8
Function that converts a Unicode string in UTF-8. Characters that cannot be represented
in ASCII format are coded according to Bx rules.

Syntax and parameter

C++
HRESULT ConvertTextUnicodeToBxNetUTF8([in] BSTR szUnicodeText, [out] BSTR
*szBxNetUTF8Text);
C#
int ConvertTextUnicodeToBxNetUTF8(string szUnicodeText, out string szBxNe-
tUTF8Text);

Parameters Description
szUnicodeText Unicode string

szBxNetUTF8Text An entered string is returned as UTF-8 text that is coded
according to Bx rules for texts.

Example (C#)
string utf8;
tools.ConvertTextUnicodeToBxNetUTF8("fünf €", out utf8);
Console.WriteLine(utf8); // "f@C3@BCnf @E2@82@AC"

ConvertTextBxNetUTF8ToUnicode
Function that converts a UTF-8 string in Unicode. The input string must be coded accord-
ing to the Bx rules.

Syntax and parameter

C++
HRESULT ConvertTextBxNetUTF8ToUnicode([in] BSTR szBxNetUTF8Text, [out] BSTR
*szUnicodeText);
C#
int ConvertTextBxNetUTF8ToUnicode(string szBxNetUTF8Text, out string szUnicode-
Text);

Parameters Description
szBxNetUTF8Text UTF-8 string coded according to Bx rules for texts

szUnicodeText Return of decoded Unicode string

Example (C#)
string unicode;
tools.ConvertTextBxNetUTF8ToUnicode("f@C3@BCnf @E2@82@AC", out unicode);
Console.WriteLine(unicode); // "fünf €"

Program interfaces Operating instructions _connect.BRAIN

200 38.026.297.002 en

19

ConvertTextUnicodeToBxNetUnicode
Conversion function converting a Unicode string to a BxNet Unicode string allowing the
string to be sent to a Unicode device. Characters that cannot be represented in ASCII for-
mat are coded according to Bx rules.

Syntax and parameter

C++
HRESULT ConvertTextUnicodeToBxNetUnicode ([in] BSTR szUnicodeText, [out] BSTR*
szBxNetUnicodeText);
C#
int ConvertTextUnicodeToBxNetUnicode (string szUnicodeText, out string szBxNe-
tUnicodeText);

Parameter Description
szUnicodeText Unicode string

szBxNetUnicodeText Returns an entered string as Unicode text for the devi-
ces which is coded based on Bx text rules.

Example (C#)
string unicodeForDevice;
tools.ConvertTextUnicodeToBxNetUnicode ("hello world, with characters € and @",
out unicodeForDevice);
Console.WriteLine(unicodeForDevice); // "hello world, with characters € and @40"

ConvertTextBxNetUnicodeToUnicode
Conversion function converting a device Unicode string to a Unicode string. The input
string must be coded according to the Bx rules.

Syntax and parameter

C++
HRESULT ConvertTextBxNetUnicodeToUnicode ([in] BSTR szBxNetUnicodeText, [out]
BSTR* szUnicodeText);
C#
int ConvertTextBxNetUnicodeToUnicode (string szBxNetUnicodeText, out string
szUnicodeText);

Parameter Description
szBxNetUnicodeText Unicode text of a Unicode device

szUnicodeText Returns decoded Unicode string

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 201

19

Example (C#)
string unicode;
tools.ConvertTextBxNetUnicodeToUnicode ("hello world, with characters € and
@40", out unicode);
Console.WriteLine(unicode); // " hello world, with characters € and @"

19.4.2 Parse functions

ParseTelegram
Parse function used to break down Bx telegrams (header and data separated) in single
components.

Syntax and parameter

C++
HRESULT ParseTelegram([in] BSTR szHeader, [in] BSTR szData, [out] VARIANT
*pHeaders, [out] VARIANT *pDatas);
C#
int ParseTelegram(string szHeader, string szData, out object pHeaders, out ob-
ject pDatas);

Parameters Description
szHeader Bx header

szData Bx data string suitable for Bx header

pHeaders Returns single command as array.

pDatas Returns single data values as array.

Example (C#)
object headers, datas;
string[] headersArray, datasArray;
tools.ParseTelegram("I!LV01|RX01|GT08|LX02", "Scale1", out headers, out datas);
headersArray = (string[])headers; // "LV01", "RX01", "GT08", "LX02"
datasArray = (string[])datas; // "", "", "Scale1", ""

Program interfaces Operating instructions _connect.BRAIN

202 38.026.297.002 en

19

ParseTelegramEx
Parse function used to break down Bx telegrams (header and data combined) in single
components.

Syntax and parameter

C++
HRESULT ParseTelegramEx([in] BSTR szHeaderData, [out] VARIANT *pHeaders, [out]
VARIANT *pDatas);
C#
int ParseTelegramEx(string szHeaderData, out object pHeaders, out object pDa-
tas);

Parameters Description
szHeaderData Bx telegram, header and data combined

pHeaders Returns single command as array.

pDatas Returns single data values as array.

Example (C#)
object headers, datas;
string[] headersArray, datasArray;
tools.ParseTelegramEx("I!LV01|RX01|GT08|Scale1|LX02", out headers, out datas);
headersArray = (string[])headers; // "LV01", "RX01", "GT08", "LX02"
datasArray = (string[])datas; // "", "", "Scale1", ""

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 203

19

ParseMemocardTelegram
Parse function used to divide memory card telegrams deriving from Gx (header and data
separated) in single telegrams Gx (header and data separated).

Syntax and parameter

C++
HRESULT ParseMemocardTelegram([in] BSTR szHeader, [in] BSTR szData, [out] VAR-
IANT *pHeaders, [out] VARIANT *pDatas);
C#
int ParseMemocardTelegram(string szHeader, string szData, out object pHeaders,
out object pDatas);

Parameters Description
szHeader Gx memory card header

szData Gx memory card data string suitable for header

pHeaders Returns single header telegrams deriving from the mem-
ory card as array.

pDatas Returns single data telegrams deriving from the memory
card as array.

Example (C#)
object headers, datas;
string[] headersArray, datasArray;
tools.ParseMemocardTelegram("A!MV07|GT01|LV01|RX01|GT08|LX02|LX02", "test|
Scale1", out headers, out datas);
headersArray = (string[])headers; // "A!GT01", "A!LV01|RX01|GT08|LX02"
datasArray = (string[])datas; // "test", "Scale1"

Program interfaces Operating instructions _connect.BRAIN

204 38.026.297.002 en

19

ParseMemocardTelegramEx
Parse function used to divide memory card telegrams deriving from Gx (header and data
combined) in single telegrams Gx (header and data separated).

Syntax and parameter

C++
HRESULT ParseMemocardTelegramEx([in] BSTR szHeaderData, [out] VARIANT *pHead-
ers, [out] VARIANT *pDatas);
C#
int ParseMemocardTelegramEx(string szHeaderData, out object pHeaders, out ob-
ject pDatas);

Parameters Description
szHeaderData Gx memory card telegram, header and data combined

pHeaders Returns single header telegrams deriving from the mem-
ory card as array.

pDatas Returns single data telegrams deriving from the memory
card as array.

Example (C#)
object headers, datas;
string[] headersArray, datasArray;
tools.ParseMemocardTelegramEx("A!MV07|GT01|test|LV01|RX01|GT08|Scale1|LX02|
LX02", out headers, out datas);
headersArray = (string[])headers; // "A!GT01", "A!LV01|RX01|GT08|LX02"
datasArray = (string[])datas; // "test", "Scale1"

Operating instructions _connect.BRAIN Program interfaces

38.026.297.002 en 205

19

ParseMemocardTelegramEx2
Parse function used to divide memory card telegrams deriving from Gx (header and data
combined) in single telegrams Gx (header and data combined).

Syntax and parameter

C++
HRESULT ParseMemocardTelegramEx2([in] BSTR szHeaderData, [out] VARIANT *pHea-
derData);
C#
int ParseMemocardTelegramEx2(string szHeaderData, out object pHeaderData);

Parameters Description
szHeaderData Gx memory card telegram, header and data combined

pHeaderData Returns single telegrams with header and data com-
bined, as array.

Example (C#)
object headerdata;
string[] headerDataArray;
tools.ParseMemocardTelegramEx2("A!MV07|GT01|test|LV01|RX01|GT08|Scale1|LX02|
LX02", out headerdata);
headerDataArray = (string[])headerdata; // "A!GT01|test", "A!LV01|RX01|GT08|
Scale1|LX02"

	Operating instructions _connect.BRAIN
	Contents
	1 About these instructions
	1.1 Safe-keeping
	1.2 Target group
	1.3 Symbols used
	1.3.1 How notes and information are depicted
	1.3.2 Explanation of warnings
	1.3.3 Viewing of menu call-up

	2 About the software
	2.1 Overview
	2.2 Rights
	2.3 Warranty
	2.4 Virus protection

	3 Licensing
	3.1 License packages
	3.2 Developer mode
	3.3 Software protection

	4 BizInfo - application information
	4.1 Overview
	4.2 Tab "Application"
	4.3 Tab "Modul"
	4.4 Tab "System"
	4.5 "Directories" tab
	4.6 "License" tab
	4.7 "3rd party" tab

	5 Device connection
	5.1 Modem
	5.1.1 Overview
	5.1.2 Configuration
	5.1.3 Connection establishment
	5.1.4 Connection clear-down

	5.2 ADDI-DATA I/O board MSX-E1516

	6 Use on terminal servers
	6.1 Citrix terminal server
	6.1.1 Installing _connect.Brain on a Citrix terminal server
	6.1.2 Configuring user accounts for _connectServer
	6.1.3 Settings in the registry
	6.1.4 Using a serial port in a Citrix session

	6.2 Windows Terminal Server
	6.2.1 Installing _connect.Brain on a Windows terminal server
	6.2.2 Temporary network breakdown when using a serial interface
	6.2.3 Using VirtualES when _connectServer has been installed as service

	7 _connectServer
	7.1 Overview
	7.2 Configuration
	7.2.1 Configuring _connectServer
	7.2.2 Operating modes
	7.2.3 Assigning user accounts
	7.2.4 Configuring operation in the network

	8 _connectConfig
	8.1 Overview
	8.2 Starting the program
	8.3 Program structure
	8.4 Menu bar and toolbar functions
	8.5 Functions in the work area
	8.6 _connectServer Configuration
	8.6.1 "Common" tab
	Application
	_connect2SAP
	_connectScannerWI
	Testing connections

	8.6.2 "Connections" tab
	Configuring serial connections
	Configuring profibus connections
	Configuring TCP/IP connection
	Interface dialogs
	Creating and editing conversion tables
	Exporting and importing conversion tables
	Creating and editing modems, modem pools and modem connections
	Creating and editing local IP addresses
	Configure inputs and outputs

	8.6.3 "Devices" tab

	8.7 _connect2File / 2File Configuration
	8.7.1 Naming log files
	8.7.2 "Common" tab
	8.7.3 "Files" tab
	8.7.4 "Devices" tab
	Assigning devices or changing assignments
	Configuring device - "Input files" tab
	Configuring device - "Outputfiles" tab
	Replacing the assignment

	Configuring device - "Application parameters" tab

	8.8 BHI Configuration
	8.8.1 Adding and deleting master/slave devices and department

	8.9 Wizard for creating devices
	8.9.1 Creating new devices using a wizard
	8.9.2 Copying devices using the wizard

	8.10 Creating links to devices of other _connect.BRAIN clients

	9 _connectDiagnostics
	9.1 Overview
	9.2 Starting the program
	9.3 Program structure
	9.4 Menu bar and toolbar functions

	10 _connect2File
	10.1 Overview
	10.2 Starting the program
	10.3 Program structure
	10.4 Menu bar and toolbar functions
	10.5 Functions in the connection windows
	10.6 File transfer
	10.6.1 Data transfer from host to _connect2File
	10.6.2 Data transfer from _connect2File to host
	10.6.3 Controlling data output by events
	10.6.4 File structure

	10.7 Troubleshooting

	11 2File
	11.1 Overview
	11.2 Starting the program
	11.3 Program structure
	11.4 Menu bar and toolbar functions
	11.5 Functions in the connection windows
	11.6 File transfer
	11.6.1 File transfer from host to 2File
	11.6.2 File transfer from to host
	11.6.3 Controlling data output by events

	11.7 File formats
	11.7.1 Text file
	File structure
	File coding

	11.7.2 XML file
	File structure
	Comparison between text file and XML file

	11.8 Troubleshooting

	12 _connect2DB
	12.1 Overview
	12.2 Starting the program
	12.3 Database setup
	12.4 Database structure
	12.5 Program structure
	12.6 Menu bar and toolbar functions
	12.7 Defining filters
	12.7.1 Creating filter using the wizard
	12.7.2 Creating filters manually

	12.8 Renaming filters
	12.9 Edit filter
	12.10 Device menu
	12.10.1 Change window devices
	12.10.2 Device settings

	12.11 Default data
	12.12 Defining handling of complex device commands
	12.13 Deleting filters and relevant database tables
	12.14 Exporting data
	12.15 Data export via command line
	12.16 Configuring _connect2DB
	12.17 Deleting database contents
	12.18 Backing up and reloading data
	12.19 Convert DBConvert database

	13 _connect2SAP
	13.1 Overview
	13.2 Installation
	13.3 Configuration
	13.3.1 _connect2SAP configuration
	13.3.2 SAP configuration
	13.3.3 Packing table configuration

	13.4 _connect2SAP Frontend
	13.5 _connect2SAP Registry and _connect2SAP Spooler
	13.6 _connect2SAP Viewer
	13.6.1 Overview
	13.6.2 Starting the program
	13.6.3 Structure of the program
	13.6.4 Menu bar and toolbar functions

	13.7 Functional components
	13.7.1 Overview of functions
	13.7.2 Z_RFC_BCT
	13.7.3 Z_RFC_BCT_MULTI
	13.7.4 Z_RFC_BCT_PRINT
	13.7.5 Z_RFC_BCT_SPOOLER
	13.7.6 Z_BCT_LABEL_GLP
	13.7.7 Z_BCT_DIMENSION
	13.7.8 Z_BCT_REG
	13.7.9 Z_BCT_NULLSTELLEN
	13.7.10 CFB_RFC_BCT_MULTI

	14 _connectScannerWI
	14.1 Overview
	14.2 Prerequisites
	14.3 Installation
	14.4 Configuration
	14.5 Starting the program
	14.6 Program structure
	14.7 Functions in the context menu

	15 VirtualES - View
	15.1 Overview
	15.2 VirtualES - Admin
	15.2.1 Starting program
	15.2.2 Structure of the program
	15.2.3 Menu bar and toolbar functions
	15.2.4 Defining new configuration

	15.3 VirtualES - View
	15.3.1 Start program
	15.3.2 Program structure
	15.3.3 Menu bar and toolbar functions
	15.3.4 Display data records
	15.3.5 Check signatures
	15.3.6 Registration of weighing results

	16 _edit.BRAIN
	16.1 Overview
	16.2 Starting the program
	16.3 Program structure
	16.4 Menu bar and toolbar functions
	16.5 Functions in the context menu

	17 LogPathConfig
	17.1 Overview
	17.2 Program structure
	17.3 Menu bar and toolbar functions
	17.4 Deleting log files

	18 Background information
	18.1 Device families
	18.2 BxNet language
	18.2.1 Telegram structure
	18.2.2 Coding of the data description
	18.2.3 BxNet data types
	18.2.4 Coding of the useful data
	18.2.5 Dimensionful data:
	18.2.6 Coding of prices
	18.2.7 Coding of weights

	19 Program interfaces
	19.1 _connectServer DCOM communication interface
	19.1.1 Methods
	Close
	CreateReceiveQueue
	DeleteReceiveQueue
	Error
	ErrorHeaderData
	GetBCSVersion
	GetCategory
	Open
	Receive
	ReceiveAuthorizationRequest
	ReceiveOne
	ReceiveOneWithoutAck
	ReceiveWithoutAck
	Reset
	Send
	SendAcknowledge
	SendAcknowledgeNeg
	SendAuthorizationResponse
	SendCheck
	SendOne
	SetReceiveQueueFilter
	IsUnicodeDevice

	19.1.2 Events
	DataArrival
	RemoteDataArrival

	19.2 _connectServer DCOM information interface
	19.2.1 Methods
	Error
	GetBCSVersion
	GetDemo
	GetDevice
	GetDeviceDCOM
	GetLicenseCountForSpecificLicense
	GetLicenseExpirationDateForProductVersion
	GetLicenseExpirationDateForSpecificLicense
	GetLicenseInformations
	GetLicenseNameForProductVersion
	GetLicenseSystemName
	GetSerialNumber
	Open

	19.3 _connectControl DCOM communication interface
	19.3.1 Properties
	Version

	19.3.2 Methods
	AboutBox
	Close
	CreateReceiveQueue
	DeleteReceiveQueue
	Error
	ErrorHeaderData
	GetBCSVersion
	GetCategory
	GetDemo
	GetDevice
	GetDeviceDCOM
	GetLicenseCountForSpecificLicense
	GetLicenseExpirationDateForProductVersion
	GetLicenseExpirationDateForSpecificLicense
	GetLicenseInformations
	GetLicenseNameForProductVersion
	GetLicenseSystemName
	GetSerialNumber
	Open
	Receive
	ReceiveAuthorizationRequest
	ReceiveOne
	ReceiveOneWithoutAck
	ReceiveWithoutAck
	Reset
	Send
	SendAcknowledge
	SendAcknowledgeNeg
	SendAuthorizationResponse
	SendCheck
	SendOne
	SetReceiveQueueFilter

	19.3.3 Events
	BCCDataArrival
	BCCRemoteDataArrival
	BCCError

	19.3.4 IsUnicodeDevice

	19.4 BctFunctions
	19.4.1 Conversion function
	ConvertBxNetToWeight
	ConvertWeightToBxNet
	ConvertTextUnicodeToBxNetUTF8
	ConvertTextBxNetUTF8ToUnicode
	ConvertTextUnicodeToBxNetUnicode
	ConvertTextBxNetUnicodeToUnicode

	19.4.2 Parse functions
	ParseTelegram
	ParseTelegramEx
	ParseMemocardTelegram
	ParseMemocardTelegramEx
	ParseMemocardTelegramEx2

